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Scaling considerations regarding the influence of vehicle induced turbulence on
dispersion in street canyons

P. Kastner-Klein, GIETH Zürich
E. Fedorovich, Univ. Karlsruhe

We express the turbulence energy production by vehicles in an urban street canyon (see Kastner-
Klein et al. 1999 for details of derivation) as:
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where n is total amount of vehicles in the canyon, L is the canyon length, v is the traffic velocity, vn
is the vehicle density per unit canyon length, vl  is the length scale of turbulence induced by car
motions, H is the characteristic length scale of the canyon cross-section (e.g. the canyon depth), and

vw  is effective velocity scale of car-induced turbulence in the canyon, let say, a rms value of
velocity fluctuations related to car motions. The above expressions yield:
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Strictly speaking, in the derived relationships the equality signs have to be replaced by signs of
approximate equality, and also proportionality coefficients should be introduced.

Then one can summate velocity variances caused by wind (taking ww  proportional to u) and due to
the traffic:

2w = 2
ww + 2

vw ,

where w is the rms velocity value resulting from both mechanisms acting together. This value may
be used for scaling of the concentration field in a street canyon with moving vehicles.

This can be a kind of theoretical framework for the combined case, when car-induced velocity
variance is derived from turbulence production considerations, but then directly summated with
wind-related velocity variance.
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The concentration values normalised with u and w are related as )/(** wucc wu = . Thus, we can put
down:
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where a= 3/4
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lv  is the geometrical scaling parameter, and x= 2
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tP∝ , where tP  is the

modelling criterion of Plate (1982), see also Kastner-Klein et al. (1998).

Below results are shown of the scaling application to the concentration field in a wind-tunnel model
of an urban street canyon with moving vehicles.
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Fit Results

Fit 4: test3
Equation Y = 1/pow(1+a*x,1/2)
a = 0.05730782613

Number of data points used = 45
Average X = 21.396
Average Y = 0.711815

Residual sum of squares = 0.0340617
Coef of determination, R-squared = 0.952212
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Fit Results

Fit 4: test3
Equation Y = 1/pow(1+a*x,1/2)
a = 0.03402485162

Number of data points used = 23
Average X = 17.1131
Average Y = 0.845563

Residual sum of squares = 0.019756
Coef of determination, R-squared = 0.962535
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Additionally we tested combined velocity scales derived from the summation of turbulence
production terms by wind and traffic and also from the summation of turbulent kinetic energies.

a) summation of turbulence production terms:

The wind-related TKE production per unit canyon volume is HuGw /3∝ , where H is the canyon
depth scale and u is the reference velocity of the external wind flow.

For vG , the scaling considerations provide vG ∝ )/)(/( 3
cvv VVlv  ∝ 23 )/( cvv llvn , where vV  is the

total volume of air disturbed by vehicles, cV  is the in-canyon air volume, vl  and cl  are, respectively,
the length scales of the vehicle-induce turbulent motion and of the canyon cross-section. When wind
is oriented approximately perpendicular to the canyon, one may assume that wu ∝ u and wl ∝ cl ∝ H.
This provides )/(/ 33 uvnGGP gwvt == , where gn = Hln vv /2 .

Now let us formally put down wG + vG = ee lu /3 , where subscripts e denote effective scales for the
canyon. Expressing wG  and vG  through velocity scales u and v, length scales vl  and H, and density

vn  as shown above, we obtain:
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This means:
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and for the standard normalised concentration ( uc ⋅ ) we should receive:
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Fit Results

Fit 4: test3
Equation Y = 1/pow(1+a*x,1/3)
a = 0.04898292985

Number of data points used = 45
Average X = 62.1095
Average Y = 0.711815

Residual sum of squares = 0.0998933
Coef of determination, R-squared = 0.859852
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Fit Results

Fit 4: test3
Equation Y = 1/pow(1+a*x,1/3)
a = 0.02584228897

Number of data points used = 23
Average X = 51.3353
Average Y = 0.845563

Residual sum of squares = 0.00987004
Coef of determination, R-squared = 0.981282

b) summation of turbulent kinetic energies:

If we now employ a similar procedure for summation of turbulence energies related to wind and
vehicle motions, we will get:
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where traffic density vn  has the same meaning as in the above expression with cubes, and L is the
scale of the canyon length. Thus, in this case the velocity scale is:
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For the standard normalised concentration ( uc ⋅ ) we should receive in this case:
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Fit Results

Fit 4: test3
Equation Y = 1/pow(1+a*x,1/2)
a = 0.0416574162

Number of data points used = 45
Average X = 30.2604
Average Y = 0.711815

Residual sum of squares = 0.0846433
Coef of determination, R-squared = 0.881247
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Fit Results

Fit 4: test3
Equation Y = 1/pow(1+a*x,1/2)
a = 0.02465739744

Number of data points used = 23
Average X = 24.5463
Average Y = 0.845563

Residual sum of squares = 0.0276666
Coef of determination, R-squared = 0.947533
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