

**National Environmental Research Institute** University of Aarhus · Denmark

NERI Technical Report No. 611, 2007

# Projection of Greenhouse Gas Emissions – 2005 to 2030

[Blank page]



**National Environmental Research Institute** University of Aarhus · Denmark

NERI Technical Report No. 611, 2007

# Projection of Greenhouse Gas Emissions – 2005 to 2030

Jytte Boll Illerup Ole-Kenneth Nielsen Morten Winther Mette Hjorth Mikkelsen Erik Lyck, Malene Nielsen Leif Hoffmann Steen Gyldenkærne Marianne Thomsen

# Data sheet

| Series title and no.:       | Technical Report from NERI No. 611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:<br>Subtitle:         | Projection of greenhouse gas emissions<br>2005 to 2030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Authors:                    | Jytte Boll Illerup, Ole-Kenneth Nielsen, Morten Winther ,Mette Hjorth Mikkelsen, Erik Lyck,<br>Malene Nielsen, Leif Hoffmann, Steen Gyldenkærne, Marianne Thomsen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Department:                 | Department of Policy Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Publisher:<br>URL:          | National Environmental Research Institute ©<br>University of Aarhus - Denmark<br>http://www.neri.dk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Vear of publication:        | January 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Editing completed:          | January 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Financial support:          | Danish Environmental Protection Agency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Please cite as:             | Illerup, J.B, Nielsen, O-K., Winther, M., Mikkelsen, M.H., Lyck, E., Nielsen, M., Hoffmann, L., Gyldenkærne, S. & Thomsen, M. 2007: Projection of Greenhouse Gas Emissions. 2005 to 2030. National Environmental Research Institute, Denmark. 116 pp. – Technical Report from NERI no. 611. http://www.dmu.dk/Pub/FR611.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                             | Reproduction permitted provided the source is explicitly acknowledged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Abstract:                   | This report contains a description of models and background data for projection of $CO_2$ , $CH_4$ , $N_2O$ , HFCs, PFCs and $SF_6$ for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts of activity rates are used in the models for those sectors for which the forecasts are available, i.e. the latest official forecast from the Danish Energy Authority. The emission factors refer to international guidelines and some are country-specific and refer to Danish legislation, Danish research reports or calculations based on emission data from a considerable number of plants. The projection models are based on the same structure and method as the Danish emission inventories in order to ensure consistency. |
| Keywords:                   | Greenhouse gases, projections, emissions, $CO_2$ , $CH_4$ , $N_2O$ , HFCs, PFs and $SF_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Layout:                     | Ann-Katrine Holme Christoffersen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ISBN:<br>ISSN (electronic): | 978-87-7772-973-7<br>1600-0048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Number of pages:            | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Internet version:           | The report is available in electronic format at NERI's website<br>http://www.dmu.dk/Pub/FR611.pdf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Proof-reading:              | Carey Smith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Printed copies for sale at: | Ministry of the Environment<br>Frontlinien<br>Rentemestervej 8<br>DK-2400 Copenhagen NV<br>Denmark<br>Tel. +45 7012 0211<br>frontlinien@frontlinien.dk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# Contents

#### Preface 5

#### Summary 6

#### Sammenfatning 9

#### 1 Introduction 12

- 1.1 Obligations 12
- 1.2 Greenhouse gases 13
- 1.3 Historical emission data 14
- 1.4 Projection models 17

References 18

#### 2 Stationary combustion 20

- 2.1 Methodology 20
- 2.2 Sources 20
- 2.3 Fuel consumption 21
- 2.4 Emission factors 23
- 2.5 Emissions 26
- 2.6 Model description 31

References 33

#### 3 Oil and gas extraction (Fugitive emissions) 35

- 3.1 Methodology 35
- 3.2 Activity data 36
- 3.3 Emission factors 37
- 3.4 Emissions 38
- 3.5 Model description 39
- References 40

#### 4 Industrial processes 41

- 4.1 Sources 41
- 4.2 Projections 41
- References 44

#### 5 Transport 45

- 5.1 Methodology and references for road transport 45
- 5.2 Other mobile sources 51
- 5.3 Fuel use and emission results 56
- 5.4 Model structure for NERI transport models 60
- References 60

#### 6 Fluorinated gases (F-gases) 62

- 6.1 Emissions model 63
- 6.2 Emissions of the F-gases HFCs, PFCs and SF<sub>6</sub> 1993-2020 (2030) 63
- 6.3 Emissions of 'pure' HFCs 66

References 69

#### 7 Agriculture 70

- 7.1 Projection of agricultural greenhouse gas emissions 70
- 7.2 Assumptions for the projection 73

7.3 Summary 80 References 81

# 8 Landfill sites 83

- 8.1 Activity data 83
- 8.2 Emissions model 83
- 8.3 Historic emissions 83
- 8.4 Projections 84

References 88

### 9 Wastewater treatment 89

References 95

### 10 Conclusions 96

- 10.1 Stationary combustion 96
- 10.2 Industrial processes 97
- 10.3 Transport 98
- 10.4 Fluorinated gases 98
- 10.5 Agriculture 99
- 10.6 Waste (Landfill sites and wastewater treatment) 99

# Annex 5.1 Transport

# Annex 5.1 Other mobile sources

# **NERI** information

**NERI technical reports** 

# Preface

This report contains a description of models and background data for projection of CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, HFCs, PFCs and SF<sub>6</sub> for Denmark. The emissions are projected to 2030 using basic scenarios which include the estimated effects on Denmark's greenhouse gas emissions of policies and measures implemented until October 2006 ('with measures' projections).

The Department of Policy Analysis of the National Environmental Research Institute (NERI) has carried out the work. The project has been financed by the Danish Environment Protection Agency (EPA).

The steering committee of the project consisted of the following members:

Erik Rasmussen (chairman, EPA), Thomas C. Jensen, (The Danish Energy Agency), Jytte Boll Illerup, (project leader, NERI), Morten Winther (NERI) and Ole-Kenneth Nielsen (NERI).

The authors would like to thank:

The Energy Agency for providing the energy consumption forecast.

The Danish Road Directorate, for providing the fleet and mileage data used in the road traffic section.

Risø National Laboratory, for providing the data on scenarios of the development of landfill deposited waste production.

The Danish Institute of Agricultural Science and the Danish Agricultural Advisory Centre for providing data for the agricultural sector.

# Summary

This report contains a description of the models and background data used for projection of the greenhouse gases CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, HFCs, PFCs and SF<sub>6</sub> for Denmark. The emissions are projected to 2030 using basic scenarios which include the estimated effects on Denmark's greenhouse gas emissions of policies and measures implemented until October 2006 ('with measures' projections). For activity rates, official Danish forecasts, e.g. the latest official forecast from the Danish Energy Authority, are used to provide activity rates in the models for those sectors for which these forecasts are available. The emission factors refer to international guidelines or are country-specific and refer to Danish legislation, Danish research reports or calculations based on emission data from a considerable number of plants in Denmark. The projection models are based on the same structure and methodology as the Danish emission inventories in order to ensure consistency.

The main sectors in the years 2008-2012 ('2010') are expected to be Energy Industries (39%), Transport (21%), Agriculture (14%), and Other Sectors (10%). For the latter sector the most important sources are fuel use in the residential sector and the agricultural sector (Figure S.1). GHG emissions show a decreasing trend from 1990 to 2030 and, in general, the emission share for the Energy Industries sector can be seen to be decreasing while the emission share for the Transport sector is increasing. The total emissions in '2010' are estimated to be 67,800 ktonnes  $CO_2$  equivalents and 60,386 ktonnes in 2030, corresponding to a decrease of about 10 %. From 1990 to '2010' the emissions are estimated to decrease by about 2%.



Figure S.1 Total GHG emissions in CO<sub>2</sub> equivalents. Distribution according to main sectors in '2010' (2008-2012) and timeseries for 1990 to 2030.

#### Stationary combustion

The GHG emissions in '2010' from the main source, which is Public power (57%), are estimated to decrease significantly in the period from 2006 to 2030, due to a partial shift in fuel use from coal to wood and municipal waste. Also, for residential combustion plants a significant

decrease in emissions is seen in the projection; the emissions almost halve from 1990 to 2030. The emissions from the other sectors remain almost constant over the period, except for energy use in oil and gas extraction where emissions are projected to increase by more than 300% from 1990 to '2010' and by almost 60% from '2010' to 2030.

#### Industrial processes

The GHG emission from industrial processes increased during the nineties, reaching a maximum in 2000. Closure of the nitric acid/fertiliser plant in 2004 has resulted in a considerable decrease in the GHG emission and stabilisation at a level about 1,750 ktonnes  $CO_2$  equivalents. The most significant source is cement production, which contributes with more than 80% of the process-related GHG emissions. Most of the processes are assumed to be constant in the projection to 2030 at the same level as in 2004. Consumption of limestone and the emission of  $CO_2$  from flue gas cleaning are assumed to follow the consumption of coal and MSW for generation of heat and power. The GHG emission from this sector will continue to be strongly dependant on cement production also in the future.

#### Transport

Road transport is the main source of GHG emissions in '2010' and emissions from this sector are expected to increase by 59% from 1990 to 2030 due to growth in traffic. The emission shares for the remaining mobile sources are small compared with road transport, and from 1990 to 2030 the total share for these categories reduces from 32 to 20%. For agriculture/forestry/fisheries emissions reduce by 27% during the same period due to smaller numbers of agricultural tractors and harvesters though with larger engines. For industry (1A2f), the emissions increase by 4% from 1990-2030; for this sector there is an emission growth from 1990-2005 (due to increased activity), followed by a slight emission reduction from 2005-2030 due to machinery gradually becoming more fuel efficient. The latter explanation is also the reason for the small emission declines for the activities residential (gardening) (1A4b) and navigation (1A3d) during the forecast period.

#### Fluorinated gases

Over the period considered, the sum of F-gas emissions is predicted to reach a maximum in '2010' and then decrease considerably due to Danish regulation targeting the gases. HFCs are the dominant F-gases, and in '2010' they are expected to contribute with 78% of the F-gas emission.

#### Agriculture

From 1990 to 2004, the emission of greenhouse gases in the agricultural sector declined from 13,050 ktonnes  $CO_2$  equivalents to 10,000 ktonnes  $CO_2$  equivalents, which corresponds to a 23% reduction. This development is expected to continue, and the emission to 2030 is expected to fall further to 8,690 ktonnes  $CO_2$  equivalents. The reduction both in the historical data and the projection can mainly be explained by improved utilisation of nitrogen in manure, a significant fall in the use of fertiliser and a reduced nitrogen leaching. These are consequences of active envi-

ronmental policy measures in this area. Measures in the form of technologies to reduce ammonia emissions in the stable as well as expansion of biogas production are taken into account in the projections but do not contribute to significant changes in the total greenhouse gas emission.

#### Waste (Landfill sites and wastewater treatment)

The total historical GHG emission from the waste sector has been decreasing since 1990, and this is predicted to continue until '2010'. This is mainly due to the decrease in the amount of waste deposited and, in turn, a decrease in the CH<sub>4</sub> emission from landfill. In '2010', CH<sub>4</sub> from landfill sites is predicted to contribute with 78% of the emission from the sector as a whole. From '2010' no further decrease in the CH<sub>4</sub> emission from landfill is foreseen; an almost constant emission level or a slight decrease is predicted. A minor increase in the CH<sub>4</sub> emission from wastewater in the period considered is foreseen, while the N<sub>2</sub>O emission from wastewater is forecasted to remain almost constant. This results in a minor increase in GHG for the sector as a whole after '2010'.

# Sammenfatning

Denne rapport indeholder en beskrivelse af modeller og baggrundsdata anvendt til fremskrivning af de danske emissioner af drivhusgasser (CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, HFCer, PFCer, SF<sub>6</sub>). Emissionerne er fremskrevet til 2030 på baggrund af et basisscenarium, som medtager de estimerede effekter på Danmarks drivhusgasudledninger af virkemidler iværksat indtil oktober 2006 ('med eksisterende virkemidler'-fremskrivninger). I modellerne er der, for de sektorer hvor det er muligt, anvendt officielle danske fremskrivninger af aktivitetsdata, f.eks. er den seneste officielle energifremskrivning fra Energistyrelsen anvendt. Emissionsfaktorerne referer enten til internationale vejledninger, dansk lovgivning, danske rapporter eller er baseret på målinger på danske anlæg. Fremskrivningsmodellerne bygger på samme struktur og metoder, som er anvendt for de danske emissionsopgørelser, hvilket sikrer at historiske og fremskrevne emissionsopgørelser er konsistente.

De vigtigste sektorer i 2008-2012 ('2010') forventes at være energiproduktion og -konvertering (39 %), transport (21 %), landbrug (14 %), og andre sektorer (10 %). For den sidstnævnte sektor er de vigtigste kilder husholdninger og landbrug (Figur R.1). Drivhusgasemissionerne viser en faldende tendens fra 1990 to 2030, og generelt falder emissionsandelen for energisektoren mens emissionsandelen for transportsektoren stiger. De totale emissioner er beregnet til 67.800 ktons  $CO_2$  ækvivalenter i '2010' og til 60.386 ktons i 2030 svarende til et fald på omkring 10 %. Fra 1990 til '2010' er emissionerne beregnet til at ville falde med ca. 2 %.





#### Stationær forbrænding

Drivhusgasemissionen fra kraft- og kraftvarmeværker, som er den største kilde i '2010' (57 %), er beregnet til at falde markant i perioden 2006 til 2030 grundet et delvis brændselsskift fra kul til træ og affald. Emissionerne fra husholdningers forbrændingsanlæg falder ifølge fremskrivningen også og bliver næsten halveret i perioden 1990 til 2030. Drivhusgasemissionerne fra andre sektorer er næsten konstante i hele perioden med undtagelse af offshoresektoren, hvor emissioner fra anvendelse af energi til udvinding af olie og gas stiger med mere end 300 % fra 1990 til'2010' og med næsten 60 % fra '2010' til 2030.

#### Industri

Emissionen af drivhusgasser fra industrielle processer er steget op gennem halvfemserne med maksimum i 2000. Ophør af produktion af salpetersyre/kunstgødning har resulteret i en betydelig reduktion af drivhusgasemissionen og den har stabiliseret sig omkring 1750 ktons CO<sub>2</sub>ekvivalenter. Den væsentligste kilde er cementproduktion, som bidrager med mere end 80 % af den procesrelaterede drivhusgasemission. De fleste procesemissioner er antaget at være konstante på samme niveau som 2004. Forbrug af kalk og derved emission af CO<sub>2</sub> fra røggasrensning antages at følge forbruget af kul og affald i kraftvarmeanlæg. Drivhusgasemissionen fra industri forventes også i fremtiden at være meget afhængig af cementproduktionen.

### Transport

Vejtransport er den største emissionskilde for drivhusgasser i '2010', og fra 1990 til 2030 forventes emissionerne at stige med 59 % pga. trafikkens vækst. Den samlede emission for andre mobile kilder er noget lavere end vejtransporten totalt, og fra 1990 til 2030 falder andre mobile kilders emissionsandel fra 32 til 20 %. For landbrug/skovbrug/fiskeri bliver emissionerne 27 % mindre i samme periode, hovedsageligt pga. et fald i antallet af traktorer og mejetærskere. For denne sektor stiger emissionerne fra 1990-2005 pga. øget aktivitet, hvorefter emissionerne falder en smule pga. gradvist mere energieffektive motorer. Dette er også grunden til de små emissionsfald for have-hushold (1A4b) og national søtransport i prognoseperioden.

#### F-gasser

I den betragtede periode er det forventet, at den samlede F-gasemission har maksimum i '2010' og derefter er stærkt faldende på grund af de danske reguleringer på området. Den dominerende F-gasgruppe er HFC'erne som i '2010' forventes at bidrage med 78 % til den samlede F-gas-emission.

#### Landbrug

I perioden fra 1990 til 2004 er emissionen af drivhusgasser faldet fra 13.050 ktons CO<sub>2</sub> ækvivalenter til 10.000 ktons CO<sub>2</sub> ækvivalenter, hvilket svarer til en reduktion på 23 %. Denne udvikling forventes at fortsætte og emissionen forudses at falde yderligere til 8.690 ktons CO<sub>2</sub> ækvivalenter i 2030. Årsagen til faldet i emissionen for den historiske såvel som den fremtidige udvikling kan forklares med en forbedring i udnyttelsen af kvælstof i husdyrgødningen, og hermed et markant fald i anvendelsen af handelsgødning og lavere emission fra kvælstofudvaskning – som resultat af en aktiv miljøpolitik på området. I fremskrivningen er der taget højde for teknologiske tiltag i form af ammoniakreducerende teknologi i stalden og en øget vækst i biogasanlæg, men disse tiltag har ikke en væsentlig indflydelse på den totale emission.

#### Affald (lossepladser og spildvand rensningsanlæg)

Affaldssektorens samlede drivhusgasemissioner har i de historiske opgørelser 1990-2004 vist et stadigt fald og dette forventes at fortsætte til '2010'. Dette skyldes fald i de affaldsmængder, der deponeres, og dermed faldende CH<sub>4</sub> emissioner fra lossepladser. CH<sub>4</sub> fra lossepladser dominerer sektoren og forventes i '2010' at udgøre 78 % af sektorens emission. Fra '2010' forventes faldet i emissioner fra lossepladser at ophøre og blive nær konstant eller stige lidt. Der forventes en mindre stigning i CH<sub>4</sub> fra spildevand i perioden, mens N<sub>2</sub>O fra spildevand forventes nærved konstant. Det samlede resultatet er en mindre stigning i drivhusgasemissionen for affaldssektoren efter '2010'.

# 1 Introduction

In the Danish Environmental Protection Agency's project 'Projection models 2010' a range of sector-related partial models were developed to enable projection of the emissions of  $SO_2$ ,  $NO_x$ , NMVOC and  $NH_3$  forward to 2010 (Illerup et al., 2002). The purpose of the present project, 'Projection of greenhouse gas emissions 2005 to 2030' has been to extend the models used in the projections to include the greenhouse gases  $CO_2$ ,  $CH_4$ ,  $N_2O$  as well as HFCs, PFCs and SF<sub>6</sub>, and project the emissions for these gases to 2030.

### 1.1 Obligations

In relation to the Kyoto Protocol, for the period 2008-2012 the EU has committed itself to reduce emissions of greenhouse gases (GHGs) on average to 8% below the level in the so-called base year: 1990 for  $CO_2$ , methane, and nitrous oxide and either 1990 or 1995 for industrial greenhouse gases (HFCs, PFCs and SF<sub>6</sub>). Under the Kyoto Protocol, Denmark has committed itself to a reduction at 21% as an element of the burdensharing agreement within the EU<sup>1</sup>. On the basis of the GHG inventory submission in 2006 and Denmark's choice of 1995 as the base year for industrial greenhouse gases, Denmark's total GHG emissions in the base year amount to 69,323 ktonnes  $CO_2$  equivalents. Calculated as 79% of the base year Denmark's assigned amount under the Burden Sharing Agreement amounts to 273,827 ktonnes  $CO_2$  equivalents in total or in average 54,765 ktonnes  $CO_2$  equivalents per year in the period 2008-2012.

Since 1990 Denmark has implemented policies and measures aiming at reductions of Denmark's emissions of  $CO_2$  and other greenhouse gases. In this report the estimated effects of policies and measures implemented until October 2006 are included in the projections, and the projection of total GHG emissions is therefore a so-called 'with measures' projection.

In addition to the implementation of policies and measures with an effect on Denmark's GHG emissions by sources, Parties to the Kyoto Protocol can also make use of certain removals by sinks and emission reductions achieved abroad through Joint Implementation projects (JI) or projects under the Clean Development Mechanism (CDM).

This report is a background report to Denmark's Second National Allocation Plan (NAP2) under the EU Emissions Trading Scheme. NAP2

<sup>&</sup>lt;sup>1</sup> In the Council's decision on the EU ratification to the Kyoto Protocol, the commitments of the different Member States are thus given as percentages compared to the base year. In connection with the Council decision, the Council (environment) and the Commission have, in a joint statement, agreed e.g. to show consideration in 2006 for Denmark's remarks to the Council conclusions of 16-17 June 1998 concerning emissions in the base year. However, in 2006 it was decided that the consideration will not take place until after the review of all EU initial reports on assigned amount under the Kyoto Protocol.

will include information on how Denmark will achieve its obligation with all the necessary measures in addition to the implemented measures taken into account in the present report's 'with measures' projection.

# 1.2 Greenhouse gases

The greenhouse gases reported under the Climate Convention and projected in this report are:

| Carbon dioxide       | CO <sub>2</sub>  |
|----------------------|------------------|
| Methane              | $CH_4$           |
| Nitrous Oxide        | N <sub>2</sub> O |
| Hydrofluorocarbons   | HFCs             |
| Perfluorocarbons     | PFCs             |
| Sulphur hexafluoride | $SF_6$           |

The main greenhouse gas responsible for the anthropogenic influence on the heat balance is CO<sub>2</sub>. The atmospheric concentration of CO<sub>2</sub> has increased from 280 to 370 ppm (about 30%) since the pre-industrial era in the nineteenth century (IPCC, Third Assessment Report). The main cause is the use of fossil fuels, but changing land use, including forest clearance, has also been a significant factor. Concentrations of the greenhouse gases methane and N<sub>2</sub>O, which are very much linked to agricultural production, have increased by 150% and 16%, respectively (IPCC, Third Assessment Report). The lifetime of the gases in the atmosphere needs to be taken into account - the longer they remain in the atmosphere the greater the overall effect. The global warming potential (GWP) for various gases has been defined as the warming effect over a given time of a given weight of a specific substance relative to the same weight of CO<sub>2</sub>. The purpose of this measure is to be able to compare and integrate the effects of individual substances on the global climate. Typical atmospheric lifetimes for different substances differ greatly, e.g. for CH<sub>4</sub> and N<sub>2</sub>O, approximately 12 and 120 years, respectively. So the time perspective clearly plays a decisive role. The lifetime chosen is typically 100 years. The effect of the various greenhouse gases can then be converted into the equivalent quantity of CO<sub>2</sub>, i.e. the quantity of CO<sub>2</sub> producing the same effect with regard to absorbing solar radiation. According to the IPCC and their Second Assessment Report, which UNFCCC has decided to use as reference, the global warming potentials for a 100-year time horizon are:

| CO <sub>2</sub> : | 1   |
|-------------------|-----|
| CH <sub>4</sub>   | 21  |
| N <sub>2</sub> O  | 310 |

Based on weight and a 100-year period, methane is thus 21 times more powerful a greenhouse gas than CO<sub>2</sub>, and N<sub>2</sub>O is 310 times more powerful. Some of the other greenhouse gases (hydrofluorocarbons, perfluorocarbons and sulphur hexafluoride) have considerably higher global warming potential values. For example, sulphur hexafluoride has a global warming potential of 23,900 (IPCC, Second Assessment Report, 1996).

### 1.3 Historical emission data

The Danish greenhouse gas emissions are estimated according to the IPCC guidelines and are aggregated into seven main sectors (Illerup et al., 2006). The greenhouse gases include  $CO_2$ ,  $CH_4$ ,  $N_2O$ , HFCs, PFCs and SF<sub>6</sub>. Figure 1.1 shows the estimated total greenhouse gas emissions in  $CO_2$  equivalents from 1990 to 2004. The emissions are not corrected for electricity trade or temperature variations.  $CO_2$  is the most important greenhouse gas, followed by  $N_2O$  and  $CH_4$  in relative importance. The contribution to national totals from HFCs, PFCs and SF<sub>6</sub> is approximately 1%. Stationary combustion plants, transport and agriculture represent the largest sources. The net  $CO_2$  removal by forestry and soil (Land Use Change and Forestry (LUCF)) is in the region of 3% of the total emission in  $CO_2$  equivalents without LUCF has decreased by 1.5% from 1990 to 2004 and by 5.5% with LUCF.



Figure 1.1 Greenhouse gas emissions in CO<sub>2</sub> equivalents distributed on main sectors for 2004. Left: Timeseries for 1990 to 2004.

#### 1.3.1 Carbon dioxide

The largest source for the emission of  $CO_2$  is the energy sector, which includes combustion of fossil fuels such as oil, coal and natural gas (Figure 1.2). Public power and district heating plants contribute with almost half of the emissions. About 24% come from the transport sector. The  $CO_2$  emission decreased by approx. 9% from 2003 to 2004. The reason for this decrease was mainly due to decreasing export of electricity. Also higher outdoor temperature in 2004 compared with 2003 contributed to the decrease. If the  $CO_2$  emission is adjusted for climatic variations and electricity trade with other countries, then the  $CO_2$  emission from the combustion of fossil fuels has decreased by 16% since 1990. The decrease in  $CO_2$  emissions is observed despite almost constant gross energy consumption and an increase in the gross national product of 34%. This is due to changes in fuel from coal to natural gas and renewable energy. As a result of the lower consumption of coal in recent years, the main part of the  $CO_2$  emission comes from oil combustion. In 2004, the actual  $CO_2$  emission was about 2% higher than the emission in 1990.



Figure 1.2 CO<sub>2</sub> emissions. Distribution according to the main sectors (2004) and time-series for 1990 to 2004.

#### 1.3.2 Nitrous oxide

Agriculture is the most important N<sub>2</sub>O emission source (Figure 1.3). N<sub>2</sub>O is emitted as a result of microbial processes in the soil. Substantial emissions also come from drainage water and coastal waters, where nitrogen is converted to N<sub>2</sub>O through bacterial processes. However, the nitrogen converted in these processes originates mainly from the agricultural use of manure and other fertilisers. The main reason for the drop in the emission of approximately 25% from 1990 to 2004 is legislation to improve the utilisation of nitrogen in manure. The legislation has resulted in less nitrogen excreted per unit of livestock produced and a considerable reduction in the use of fertilisers. The basis for the N<sub>2</sub>O emission is then reduced. Approximately 10% of the emission of N<sub>2</sub>O comes from combustion of fossil fuels, and transport accounts for around 6%. The N<sub>2</sub>O emission from transport has increased during the nineties because of the increase in the use of catalyst cars. Emissions of N<sub>2</sub>O from nitric acid production amount to approximately 7% of the total N<sub>2</sub>O emission.



Figure 1.3  $N_2O$  emissions. Distribution according to the main sectors (2004) and time-series for 1990 to 2004.

#### 1.3.3 Methane

The largest sources of anthropogenic CH<sub>4</sub> emissions are agricultural activities, managed waste disposal on land, public power and district heating plants (Figure 1.4). The emission from agriculture derives from enteric fermentation and management of animal manure. The increasing CH<sub>4</sub> emission from public power and district heating plants is due to the increasing use of gas engines in the decentralised cogeneration plant sector. Approximately 3% of the natural gas in the gas engines is not combusted. From 1990, the emission of CH<sub>4</sub> from enteric fermentation has decreased due to the decrease in the number of cattle. However, the emission from manure management has increased due to a change away from traditional stable systems towards an increase in slurry-based stable systems. Altogether, the emission of CH<sub>4</sub> for the agricultural sector has decreased by approximately 7% from 1990 to 2004. The emission of CH<sub>4</sub> from waste disposal has decreased slightly due to increases in the incineration of waste.



Figure 1.4  $CH_4$  emissions. Distribution according to the main sectors (2004) and time-series for 1990 to 2004.

#### 1.3.4 HFCs, PFCs and SF<sub>6</sub>

This part of the Danish inventory only comprises data for all substances from 1995. From 1995 to 2000, there has been a continuous and substantial increase in the contribution from the range of F-gases as a whole, calculated as the sum of emissions in  $CO_2$  equivalents (Figure 1.5). This increase is simultaneous with the increase in the emission of HFCs. For the time-series 2000-2004, the increase has been much lower than for the years 1995 to 2000. SF<sub>6</sub> contributed considerably in earlier years, with

52% in 1993. Environmental awareness and regulation of this gas under Danish law has reduced its use in industry, with the result that the contribution in 2004 was approximately 4%. The use of HFCs, and especially HFC-134a as a major contributor to HFCs, has increased several fold. HFCs have, therefore, become dominant F-gases, comprising 48% in 1993, but 94% in 2004. HFC-134a is mainly used as a refrigerant. However, the use of HFC-134a as a refrigerant, as well as the use of other HFCs as refrigerants, is stable or falling. This is due to Danish legislation, which, in 2007, forbids new HFC-based refrigerant stationary systems. On the other hand, the use of air conditioning in mobile systems is on the increase.



Figure 1.5 F-gas emissions. Time-series for 1990 to 2004.

#### 1.4 Projection models

Projection of emissions can be considered as emission inventories for the future in which the historical data is replaced by a number of assumption and simplifications. In the present project the emission factor method is used and the emission as a function of time for a given pollutant can be expressed as:

(1.1) 
$$E = \sum_{s} A_{s}(t) \cdot E\bar{F_{s}(t)}$$

where  $A_s$  is the activity for sector s for the year t and  $EF_s(t)$  is the aggregated emission factor for sector s.

In order to model the emission development as a consequence of changes in technology and legislation, the activity rates and emission factors of the emission source should be aggregated at an appropriate level, at which relevant parameters such as process type, reduction targets and installation type can be taken into account. If detailed know-ledge and information of the technologies and processes are available, the aggregated emission factor for a given pollutant and sector can be estimated from the weighted emission factors for relevant technologies as given in equation 1.2:

(1.2) 
$$\overline{EF}_{s}(t) = \sum_{k} P_{s,k}(t) \cdot EF_{s,k}(t)$$

where P is the activity share of a given technology within a given sector,  $EF_{s,k}$  is the emission factor for a given technology and k is the type of technology.

Official Danish forecasts of activity rates are used in the models for those sectors for which the forecasts are available. For other sectors projected activity rates are estimated in co-operation with relevant research institutes and other organisations. The emission factors are based on recommendations from the IPCC Guidelines (IPCC, 1997), IPCC Good Practice Guidance and Uncertainty Management (2000) and the Joint EMEP/CORINAIR Guidebook (EMEP/CORINAIR, 2003) as well as data from measurements made in Danish plants. The influence of legislation and ministerial orders on the development of the emission factors has been estimated and included in the models.

The projection models are based on the same structure and method as the Danish emission inventories in order to ensure consistency. In Denmark the emissions are estimated according to the CORINAIR method (EMEP/CORINAIR, 2003) and the SNAP (Selected Nomenclature for Air Pollution) sector categorisation and nomenclature are used. The detailed level makes it possible to aggregate to both the UNECE/EMEP nomenclature (NFR) and the IPCC nomenclature (CRF).

# References

EMEP/CORINAIR (2003): EMEP/CORINAIR Emission Inventory Guidebook 3rd Edition September 2003 Update, Technical Report no 20, European Environmental Agency, Copenhagen. http://reports.eea.eu.int/EMEPCORINAIR4/en.

Illerup, J.B., Birr-Pedersen, K., Mikkelsen, M.H, Winther, M., Gyldenkærne, S., Bruun, H.G. & Fenhann, J. (2002): Projection Models 2010. Danish Emissions of SO2, NOx, NMVOC and NH3. National Environmental Research Institute. - NERI Technical Report 414: 192 pp. <u>Internet version</u>

Illerup, J.B., Lyck, E., Nielsen, O.K., Mikkelsen, M.H., Hoffmann, L., Gyldenkærne, S., Nielsen, M., Sørensen, P.B., Vesterdal, L., Fauser, P., Thomsen, M. & Winther, M. (2006): Denmark 's National Inventory Report 2006. Submitted under the United Nations Framework Convention on Climate Change, 1990-2004. National Environmental Research Institute. - NERI Technical Report 589: 555 pp. (electronic). <u>Internet version</u>

IPCC (1997): Greenhouse Gas Inventory Reporting Instructions. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 1, 2 and 3. The Intergovernmental Panel on Climate Change (IPCC), IPCC WGI Technical Support Unit, United Kingdom. <u>http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.htm</u>

IPCC (2000): IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. <u>http://www.ipcc-nggip.iges.or.jp/public/gp/gpgaum.htm</u>

IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Edited by J. T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P. J. van der Linden, and D. Xiaosu. Cambridge University Press, Cambridge, United Kingdom and NY, USA, 881 pp. <u>http://www.cambridge.org/uk/earthsciences/climate-change/</u> IPCC, 1996: Climate Change 2005: The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Edited by J. T. Houghton, L.G. Meira Filho, B.A. Callender, N. Harris, A. Kattenberg, and K. Maskell. Cambridge University Press, Cambridge, United Kingdom and NY, USA, 572 pp. <u>http://www.ipcc.ch/pub/sa(E).pdf</u>

# 2 Stationary combustion

# 2.1 Methodology

Stationary combustion plants are included in the CRF emission sources 1A1 Energy Industries, 1A2 Manufacturing Industries and 1A4 Other sectors.

The methodology for emission projections are, just as the Danish emission inventory for stationary combustion plants, based on the CORI-NAIR system described in the EMEP/CORINAIR Guidebook (EMEP/CORINAIR, 2003). The projections are based on official activity rates forecast from the Danish Energy Authority and on emission factors for different fuels, plants and sectors. For each of the fuels and categories (sector and e.g. type of plant), a set of general emission factors has been determined. Some emission factors refer to the IPPC (IPCC, 1997), the EMEP/CORINAIR Guidelines Guidebook (EMEP/CORINAIR, 2003) and some are country-specific and refer to Danish legislation, Danish research reports or calculations based on emission data from a considerable number of plants.

Some of the large plants, such as e.g. power plants and municipal waste incineration plants are registered individually as large point sources and emission data from the actual plants are used. The  $CO_2$  from incineration of the plastic part of municipal waste is included in the projected emissions.

# 2.2 Sources

The combustion of fossil fuels is one of the most important sources of greenhouse gas emissions and this chapter covers all sectors which use fuels for energy production, with the exception of the transport sector. Table 2.1 shows the sector categories used and the relevant classification numbers according to SNAP and IPCC.

Table 2.1 Sectors included in stationary combustion

| ,                                               |      |      |
|-------------------------------------------------|------|------|
| Sector                                          | IPCC | SNAP |
| Public power                                    | 1A1a | 0101 |
| District heating plants                         | 1A1a | 0102 |
| Petroleum refining plants                       | 1A1b | 0103 |
| Oil/gas extraction                              | 1A1c | 0105 |
| Commercial and institutional plants             | 1A4a | 0201 |
| Residential plants                              | 1A4b | 0202 |
| Plants in agriculture, forestry and aquaculture | 1A4c | 0203 |
| Combustion in industrial plants                 | 1A2  | 03   |
| Flaring                                         | 1B2c | 09   |

In Denmark, all municipal waste incineration is utilised for heat and power production. Thus, incineration of waste is included as stationary combustion in the IPCC Energy sector (source categories 1A1, 1A2 and 1A4).

Fugitive emissions and emissions from flaring in oil refinery and in gas and oil extraction are estimated in Chapter 3 on fugitive emissions.

As seen in Figure 1.2 in Section 1.3, the sector contributing most to the emission of  $CO_2$  is public power and district heating plants.

### 2.3 Fuel consumption

Energy consumption in the model is based on the Danish Energy Authority's energy consumption projections to 2030 (Danish Energy Authority, 2006a) and energy projections for individual plants (Danish Energy Authority, 2006b) with the exception of two industrial plants where data are collected from Statistics Denmark and information obtained from the plants, themselves.

In the projection model the sources are separated into area sources and large point sources, where the latter cover all plants larger than  $25 \text{ MW}_{e}$  and two industrial plants. The projected fuel consumption of area sources is calculated as total fuel consumption minus the fuel consumption of large point sources and mobile sources.

The emission projections are based on the amount of fuel which is expected to be combusted in Danish plants and is not corrected for international trade in electricity. For plants larger than 25 MWe, fuel consumption is specified in addition to emission factors. Fuel use by fuel type is shown in Table 2.2, and Figures 2.1 and 2.3.

|                    |        | ( . )  |        |        |        |        |        |
|--------------------|--------|--------|--------|--------|--------|--------|--------|
| Fuel type          | 2005   | 2010   | 2015   | 2020   | 2025   | 2029   | 2030   |
| Natural gas        | 215275 | 192224 | 224063 | 241663 | 212970 | 212432 | 212521 |
| Steam coal         | 101790 | 166350 | 185922 | 129322 | 119265 | 103191 | 104132 |
| Wood and simil.    | 45383  | 47023  | 49071  | 73896  | 74498  | 92632  | 93688  |
| Municipal waste    | 42300  | 43642  | 43067  | 47205  | 49743  | 50424  | 50680  |
| Gas oil            | 35993  | 29357  | 26611  | 27543  | 26444  | 26237  | 26285  |
| Residual oil       | 24153  | 27181  | 28191  | 28193  | 26854  | 25000  | 25324  |
| Agricultural waste | 23870  | 27088  | 26877  | 24915  | 25390  | 25333  | 25100  |
| Refinery gas       | 16555  | 16555  | 16555  | 16555  | 16555  | 16555  | 16555  |
| Petroleum coke     | 8442   | 8382   | 8353   | 8336   | 8327   | 8325   | 8325   |
| Biogas             | 3882   | 4626   | 4675   | 4672   | 4675   | 4667   | 4667   |
| LPG                | 1682   | 1755   | 1710   | 1743   | 1757   | 1741   | 1737   |
| Coke               | 813    | 840    | 891    | 973    | 1025   | 1051   | 1057   |
| Kerosene           | 277    | 230    | 205    | 193    | 186    | 184    | 184    |
| Total              | 520413 | 565252 | 616190 | 605207 | 567688 | 567774 | 570256 |

 Table 2.2
 Projected fuel consumption (TJ)

Throughout the period, natural gas and coal are the most important fuels, followed by wood and municipal waste. The largest variations are seen for coal use and renewable energy use. Coal use peaks in 2008/2009 and decreases markedly in 2010. From 2010 to 2015 a small increase is seen, followed by a steady decrease until 2030. For wood the projected consumption increases throughout the period as a whole and



in 2030 the consumption of wood is projected to be almost as high as the consumption of coal.

Figure 2.1 Projected energy consumption by fuel type.

Fuel use by sector is shown in Figure 2.2. The fuel sectors consuming the most fuel are public power, industry, residential, off-shore and district heating. According to the energy projection the fuel consumption in the off-shore sector will increase by more than 100 % from 2010 to 2020.



Figure 2.2 Energy use by sector

Power plants larger than 25 MWe use about 40 % of total fuel used and for these plants a rise in energy consumption is seen from 2005 to 2008, followed by a sharp fall in 2010 (Figure 2.3). The share of fuel use comprised by exported electricity constitutes 4-26 % of total fuel consumption over the period 2006 to 2030 (Figure 2.4).



Figure 2.3 Energy consumption for plants > 25 MWe



Electricity eksport

Figure 2.4 Fuel consumption associated with electricity export

# 2.4 Emission factors

#### 2.4.1 Area sources

For area sources, emission factors for 2004 have been used (Nielsen, Nielsen and Illerup, 2006). The emission factor for  $CO_2$  alone is fuel-

dependent. The  $N_2O$  and  $CH_4$  emission factors depend on the sector (SNAP) in which the fuel is used.

The energy projections are not made at similarly detailed SNAP level as the historic emissions inventories. The majority of emissions factors are, however, the same within the aggregated SNAP categories, which are combined in the projections.

For biogas and natural gas, however, different emissions factors are used within the majority of SNAP categories. For these fuels, Implied Emission Factors (IEF) have therefore been calculated for each of the SNAP categories. In calculating these, it is assumed that the distribution of fuel use across boilers, gas turbines and engines within each SNAP category remains the same over the period 2004-2030. If consumption data falls/rises significantly, this is not a good assumption as production from gas engines/gas turbines is linked to district heat sales, whereas production from certain larger power plants is not. This, however, is thought not to be the case with the energy projections here.

The calculated Implied Emission Factors (IEF) for natural gas and biogas in 2004 are shown in Table 2.3. The IEFs are assumed to remain unchanged over the period 2004-2030 with one exception. For natural gas powered engines, new emission limit values came into force for existing plants in 2006.

For SNAP 0101, point sources account for a large proportion of the consumption. In the calculation of the IEF for natural gas and biogas, it is assumed that all the plants under SNAP 010101 and 010102 are included as point sources, while SNAP 010103 is included as an area source. This is not entirely correct as SNAP 010103 includes plants < 50MW thermal input, while point sources cover plants larger than 25MW<sub>e</sub>. For gas turbines, a proportion of the consumption of natural gas is included under point sources and, in calculating the IEF, this fuel consumption is deducted.

In the calculation of IEF for industrial plants, consideration is not similarly given to that a proportion of the consumption is included as point sources.

|                 |            |             | Fuel consumption TJ |       |       | Emission<br>(proje | IEF<br>a/G.I |      |        |
|-----------------|------------|-------------|---------------------|-------|-------|--------------------|--------------|------|--------|
|                 | SNAP       | Fuel        | Boilers             | GT    | GM    | Boilers            | GT           | GM   | g, cio |
| CH <sub>4</sub> | 010103 - 5 | Natural gas | 839                 | 2745  | 26392 | 15                 | 2            | 485  | 428    |
| CH₄             | 102        | Natural gas | 2040                | -     | 474   | 15                 | 2            | 485  | 104    |
| CH₄             | 103        | Natural gas | -                   | -     | -     | 15                 | 2            | 485  | -      |
| CH₄             | 105        | Natural gas | 361                 | 27069 | 12    | 15                 | 2            | 485  | 2      |
| $CH_4$          | 201        | Natural gas | 8993                | 22    | 1033  | 15                 | 2            | 485  | 63     |
| CH₄             | 202        | Natural gas | 29922               | -     | 1476  | 15                 | 2            | 485  | 37     |
| CH₄             | 203        | Natural gas | 2257                | 54    | 2864  | 15                 | 2            | 485  | 275    |
| $CH_4$          | 301        | Natural gas | 29966               | 6633  | 1570  | 15                 | 2            | 485  | 32     |
| $CH_4$          | 010103 - 5 | Biogas      | 78                  | -     | 1435  | 4                  | 4            | 323  | 307    |
| $CH_4$          | 102        | Biogas      | 23                  | -     | 36    | 4                  | 4            | 323  | 198    |
| $CH_4$          | 103        | Biogas      | -                   | -     | -     | 4                  | 4            | 323  | -      |
| $CH_4$          | 105        | Biogas      | -                   | -     | 61    | 4                  | 4            | 323  | 323    |
| $CH_4$          | 201        | Biogas      | 612                 | -     | 517   | 4                  | 4            | 323  | 150    |
| $CH_4$          | 202        | Biogas      | -                   | -     | -     | 4                  | 4            | 323  | -      |
| $CH_4$          | 203        | Biogas      | 268                 | -     | 411   | 4                  | 4            | 323  | 197    |
| $CH_4$          | 301        | Biogas      | 158                 | -     | 17    | 4                  | 4            | 323  | 35     |
| $N_2O$          | 010103 - 5 | Natural gas | 839                 | 2745  | 26392 | 1,00               | 2,20         | 1,30 | 1,37   |
| $N_2O$          | 102        | Natural gas | 2040                | -     | 474   | 1,00               | 2,20         | 1,30 | 1,06   |
| $N_2O$          | 103        | Natural gas | -                   | -     | -     | 1,00               | 2,20         | 1,30 | -      |
| $N_2O$          | 105        | Natural gas | 361                 | 27069 | 12    | 1,00               | 2,20         | 1,30 | 2,18   |
| $N_2O$          | 201        | Natural gas | 8993                | 22    | 1033  | 1,00               | 2,20         | 1,30 | 1,03   |
| $N_2O$          | 202        | Natural gas | 29922               | -     | 1476  | 1,00               | 2,20         | 1,30 | 1,01   |
| $N_2O$          | 203        | Natural gas | 2257                | 54    | 2864  | 1,00               | 2,20         | 1,30 | 1,18   |
| $N_2O$          | 301        |             | 29966               | 6633  | 1570  | 1,00               | 2,20         | 1,30 | 1,22   |
| $N_2O$          | 010103 - 5 | Biogas      | 78                  | -     | 1435  | 2,00               | 2,00         | 0,50 | 0,58   |
| $N_2O$          | 102        | Biogas      | 23                  | -     | 36    | 2,00               | 2,00         | 0,50 | 1,09   |
| $N_2O$          | 103        | Biogas      | -                   | -     | -     | 2,00               | 2,00         | 0,50 | -      |
| $N_2O$          | 105        | Biogas      | -                   | -     | 61    | 2,00               | 2,00         | 0,50 | 0,50   |
| $N_2O$          | 201        | Biogas      | 612                 | -     | 517   | 2,00               | 2,00         | 0,50 | 1,31   |
| $N_2O$          | 202        | Biogas      | -                   | -     | -     | 2,00               | 2,00         | 0,50 | -      |
| $N_2O$          | 203        | Biogas      | 268                 | -     | 411   | 2,00               | 2,00         | 0,50 | 1,09   |
| $N_2O$          | 301        | Biogas      | 158                 |       | 17    | 2,00               | 2,00         | 0,50 | 1,85   |

Table 2.3  $CH_4$  and N<sub>2</sub>O for natural gas and biogas, calculation of Implied Emission Factors (IEF) based on emission factors from 2005 and fuel consumption in 2005

#### 2.4.2 Point sources

Plant-specific emission factors are not used for greenhouse gases. Therefore, emission factors for the individual fuels / SNAP categories are used. Point sources are, with a few exceptions, plants under SNAP 010101 / 010102 / 010103. A few plants come under other SNAP categories:

Gas turbines - here the emission factors for SNAP 010104 are used

Aalborg Portland - here the emission factors for SNAP 0301 are used

Junckers - here the emission factors for SNAP 0301 are used

Rexam Glas Holmegaard - here the emission factors for SNAP 0301 are used.

## 2.5 Emissions

Emissions for the individual greenhouse gases are calculated by means of Equation 2.1, where A is the activity (fuel consumption) for sector s for year t and  $EF_s(t)$  is the aggregate emission factor for sector s.

$$Eq. 2.1 \quad E = \sum_{s} A_{s}(t) \cdot E\bar{F_{s}(t)}$$

The total emission in  $CO_2$  equivalents for stationary combustion is shown in Table 2.4.

Table 2.4 Greenhouse gas emissions in CO<sub>2</sub> equivalents (1 000 tonnes)

| •                                               |        | •      | ,     |        |        |       |       |       |
|-------------------------------------------------|--------|--------|-------|--------|--------|-------|-------|-------|
| Sector                                          | 1990   | 2000   | 2005  | '2010' | '2015' | 2020  | 2025  | 2030  |
| Public power                                    | 23 009 | 22 824 | 13831 | 20970  | 19333  | 15637 | 13513 | 12030 |
| Gas turbines                                    | 0      | 0      | 922   | 282    | 577    | 876   | 639   | 692   |
| District heating plants                         | 1 852  | 286    | 1624  | 1779   | 1737   | 1455  | 2043  | 1884  |
| Petroleum refining plants                       | 908    | 999    | 1018  | 1018   | 1018   | 1018  | 1018  | 1018  |
| Oil/gas extraction                              | 546    | 1 467  | 1653  | 2499   | 4026   | 4856  | 4088  | 4088  |
| Commercial and institutional plants             | 1 419  | 940    | 948   | 887    | 845    | 836   | 828   | 816   |
| Residential plants                              | 5 066  | 4 145  | 4037  | 3365   | 2962   | 2744  | 2618  | 2620  |
| Plants in agriculture, forestry and aquaculture | 620    | 779    | 764   | 798    | 819    | 810   | 802   | 806   |
| Combustion in industrial plants                 | 4 639  |        | 4762  | 4886   | 4975   | 5023  | 5052  | 5059  |
| Flaring                                         | 265    | 5 146  | 459   | 626    | 654    | 654   | 475   | 475   |
| Total                                           | 38 324 | 37 186 | 30017 | 37110  | 36947  | 33910 | 31077 | 29488 |

The projected emissions in 2008-2012 are approx. 1.200 ktonnes (CO<sub>2</sub>equiv.) lower than the emissions in 1990. From 1990 to 2030, the total emission falls by approx. 8,800 ktonnes (CO<sub>2</sub>-equiv.) or 23 % due to coal being partially replaced by renewable energy. The emission projections for the three greenhouse gases are shown in Figures 2.5-2.10 and in Tables 2.5-2.7, together with the historic emissions for 1990 and 2000 (Illerup et al. 2006).





Figure 2.5 CO<sub>2</sub> emissions by sector



Figure 2.6 CO<sub>2</sub> emissions by fuel

| Table 2.5         CO <sub>2</sub> emissions (ktonnes) |        |        |       |        |        |       |       |       |
|-------------------------------------------------------|--------|--------|-------|--------|--------|-------|-------|-------|
| Sector                                                | 1990   | 2000   | 2005  | '2010' | '2015' | 2020  | 2025  | 2030  |
| Public power                                          | 22 931 | 22 412 | 13456 | 20702  | 19109  | 15311 | 13311 | 11828 |
| Gas turbines                                          |        |        | 910   | 278    | 570    | 867   | 631   | 684   |
| District heating plants                               | 1 805  | 265    | 1556  | 1709   | 1668   | 1403  | 1971  | 1816  |
| Petroleum refining plants                             | 897    | 988    | 1006  | 1006   | 1006   | 1006  | 1006  | 1006  |
| Oil/gas extraction                                    | 540    | 1 449  | 1632  | 2468   | 3976   | 4796  | 4037  | 4037  |
| Commercial and institutional plants                   | 1403   | 913    | 915   | 856    | 815    | 806   | 798   | 787   |
| Residential plants                                    | 4 946  | 4 003  | 3844  | 3169   | 2760   | 2535  | 2400  | 2392  |
| Plants in agriculture, forestry and aquaculture       | 594    | 726    | 709   | 742    | 763    | 755   | 747   | 751   |
| Combustion in industrial plants                       | 4 582  | 5 067  | 4673  | 4796   | 4883   | 4930  | 4960  | 4967  |
| Flaring                                               | 263    | 594    | 456   | 622    | 650    | 650   | 472   | 472   |
| Total                                                 | 37 961 | 36 419 | 29160 | 36348  | 36200  | 33060 | 30334 | 28741 |

 $CO_2$  is the dominant greenhouse gas for stationary combustion and comprises, in 2010, approx. 98 % of total emissions in  $CO_2$  equivalents. The most important source is the public power sector which contributes with about 58% in '2010' to the total emissions from stationary combustion plants. Other important sources are combustion plants in industry, residential and oil/gas extraction. The emission of  $CO_2$  decreases by 21 % from 2015 to 2030 due to the partial shift in fuels from coal to wood and municipal waste.



2.5.2 CH<sub>4</sub> emissions

Figure 2 CH<sub>4</sub> emissions by sector



Figure 2.8 CH<sub>4</sub> emissions by fuel

| Table 2.6 | CH <sub>4</sub> emissions | (tonnes) |
|-----------|---------------------------|----------|
|-----------|---------------------------|----------|

| Sector                                          | 1990  | 2000   | 2005  | ʻ2010' | '2015' | 2020  | 2025  | 2030  |
|-------------------------------------------------|-------|--------|-------|--------|--------|-------|-------|-------|
| Public power                                    | 595   | 14 402 | 14481 | 8633   | 6693   | 11666 | 6212  | 6155  |
| Gas turbines                                    | 0     | 0      | 24    | 7      | 16     | 26    | 18    | 20    |
| District heating plants                         | 464   | 381    | 1877  | 1949   | 1973   | 1198  | 2039  | 1913  |
| Petroleum refining plants                       | 32    | 2      | 27    | 27     | 27     | 27    | 27    | 27    |
| Oil/gas extraction                              | 16    | 57     | 54    | 82     | 132    | 160   | 134   | 134   |
| Commercial and institutional plants             | 189   | 912    | 1013  | 985    | 962    | 948   | 934   | 920   |
| Residential plants                              | 3 037 | 4 362  | 6390  | 6638   | 6972   | 7266  | 7606  | 7962  |
| Plants in agriculture, forestry and aquaculture | 793   | 2 130  | 2217  | 2244   | 2237   | 2203  | 2198  | 2195  |
| Combustion in industrial plants                 | 646   | 1 488  | 1858  | 1903   | 1918   | 1906  | 1904  | 1887  |
| Flaring                                         | 84    | 111    | 8     | 11     | 11     | 11    | 8     | 8     |
| Total                                           | 5 857 | 23 845 | 27948 | 22479  | 20942  | 25411 | 21081 | 21222 |

The two largest sources of  $CH_4$  emissions are public power and residential plants, which also fits well with the fact that natural gas and wood are the fuels contributing most to the  $CH_4$  emission. There is an apparent rise in emissions from 1990 to 2000 due to the increase in the use of gas engines during the 1990s.

#### 2.5.3 N<sub>2</sub>O emissions

The contribution from the  $N_2O$  emission to the total greenhouse gas emission is small and the emissions stem from various combustion plants.



Figure 2.9 N<sub>2</sub>O emissions by sector



Figure 2.10 N<sub>2</sub>O emissions by fuel

| Sector                                          | 1990 | 2000 | 2005 | '2010' | '2015' | 2020 | 2025 | 2030 |
|-------------------------------------------------|------|------|------|--------|--------|------|------|------|
| Public power                                    | 212  | 354  | 229  | 280    | 269    | 260  | 231  | 233  |
| Gas turbines                                    | 0    | 0    | 35   | 11     | 21     | 30   | 23   | 25   |
| District heating plants                         | 120  | 41   | 90   | 94     | 90     | 84   | 94   | 89   |
| Petroleum refining plants                       | 31   | 35   | 38   | 38     | 38     | 38   | 38   | 38   |
| Oil/gas extraction                              | 21   | 55   | 63   | 95     | 152    | 184  | 155  | 155  |
| Commercial and institutional plants             | 39   | 25   | 35   | 34     | 33     | 32   | 32   | 32   |
| Residential plants                              | 182  | 161  | 190  | 182    | 181    | 183  | 187  | 194  |
| Plants in agriculture, forestry and aquaculture | 30   | 27   | 27   | 28     | 29     | 29   | 29   | 29   |
| Combustion in industrial plants                 | 141  | 152  | 159  | 163    | 166    | 169  | 170  | 170  |
| Flaring                                         | 0    | 10   | 8    | 11     | 11     | 11   | 8    | 8    |
| Total                                           | 775  | 860  | 1809 | 1925   | 2011   | 1988 | 1940 | 972  |

Table 2.7 N<sub>2</sub>O emissions (tonnes)

# 2.6 Model description

The software used for the energy model is Microsoft Access 2003, which is a Relational Database Management System (RDBMS) for creating databases. The database is called the 'Fremskrivning2005-2030 model' and the overall construction of the database is shown in Figure 2.11.

The model consists of input data collected in tables containing data for fuel consumption and emission factors for combustion plants larger than 25 MWe and combustion plants smaller than 25 MWe. 'Area' and 'Point' in the model refer to small and large combustion plants, respectively. In Table 2.8 the names and the content of the tables are listed.

Table 2.8 Tables in the 'Fremskrivning2005-2030 model'.

| Content                                      |
|----------------------------------------------|
| Emission factors for small combustion plants |
| Fuel consumption for small combustion plants |
| Emission factors for large combustion plants |
| Fuel consumption for large combustion plants |
|                                              |

From the data in these tables a number of calculations and unions are created by means of queries. The names and the functions of the queries used for calculating the total emissions are shown in Table 2.9.

 Table 2.9
 Queries for calculating the total emissions.

| Name           | Function                                                                                       |
|----------------|------------------------------------------------------------------------------------------------|
| qEmissionArea  | Calculation of the emissions from small combustion plants.<br>Input: tblActArea and qEmfArea   |
| qEmissionPoint | Calculation of the emissions from large combustion plants.<br>Input: tblActPoint and qEmfPoint |
| qEmissionAll_a | Union of qEmissionArea and qEmissionPoint                                                      |

Based on some of the queries a number of summation queries are available in the 'Fremskrivning2005-2030 model' (Figure 2.12). The outputs from the summation queries are Excel-pivot tables.

| Table 2.10 Summation queries. |                                                                                                        |
|-------------------------------|--------------------------------------------------------------------------------------------------------|
| Name                          | Output                                                                                                 |
| qxlsEmissionAll               | Table containing emissions for SNAP groups, Years and Pollutants                                       |
| qxlsEmissionArea              | Table containing emissions for small combustion plants for SNAP groups, Years and Pollutants           |
| qxlsEmissionPoint             | Table containing emissions for large combustion plants for SNAP groups, Years and Pollutants           |
| qxlsActivityAll               | Table containing fuel consumption for SNAP groups, Years and Pollutants                                |
| qxlsActivityPoint             | Table containing fuel consumption for large combustion plants for<br>SNAP groups, Years and Pollutants |

All the tables and queries are connected and changes of one or some of the parameters in the tables result in changes in the output tables.



Figure 2.11 The overall construction of the database.



Figure 2.12 Summation queries.

### References

Danish Energy Authority (2006 a): Energy projections 2005-2030, October 2006.

Danish Energy Authority (2006 b): Energy projections 2005-2030 of individual plants, RAMSES, October 2006.

Illerup, J.B., Birr-Pedersen, K., Mikkelsen, M.H, Winther, M., Gyldenkærne, S., Bruun, H.G. & Fenhann, J. (2002): Projection Models

2010. Danish Emissions of SO2, NOx, NMVOC and NH3. National Environmental Research Institute. - NERI Technical Report 414 : 192 pp. Internet copy

Illerup, J.B., Lyck, E., Nielsen, O.K., Mikkelsen, M.H., Hoffmann, L., Gyldenkærne, S., Nielsen, M., Sørensen, P.B., Vesterdal, L., Fauser, P., Thomsen, M. & Winther, M. (2006): Denmark 's National Inventory Report 2006. Submitted under the United Nations Framework Convention on Climate Change, 1990-2004. National Environmental Research Institute. - NERI Technical Report 589: 555 pp. (electronic). Internet copy

Nielsen, M. Nielsen, O. K. & Illerup, J.B. (2006): Danish emission inventories for stationary combustion plants. Inventories until year 2004. National Environmental Research Institute. - Research Notes from NERI 2006: 141 pp. (In press).
# 3 Oil and gas extraction (Fugitive emissions)

# 3.1 Methodology

The total emission of VOCs from the extraction of oil and gas is expressed in Equation 3.1.

$$Eq 3.1 \quad E_{total} = E_{extraction} + E_{GT} + E_{ship} + E_{pipeline} + E_{networks}$$

 $E_{\text{extraction}}$  represents emissions from plants which are used in connection with the offshore extraction of oil and gas and include emissions from venting, evaporation (fugitive loss) and flaring (refer to Equation 3.2).

$$Eq \ 3.2 \qquad E_{extraction} = E_{venting} + E_{fugitive} + E_{flaring}$$

In Denmark, the venting of gas is considered to be very limited as the controlled emission is flared.  $E_{venting}$  is, therefore, set to zero.

According to the EMEP/CORINAIR Guidebook (EMEP/CORINAIR, 2003), the total fugitive emission of VOC can be calculated by means of Equation 3.3:

Eq 3.3 
$$E_{VOC, fugitive} = 40.2 \cdot N_P + 1.1 \cdot 10^{-2} P_{gas} + 8.5 \cdot 10^{-6} \cdot P_{oil}$$

where  $N_P$  is the number of platforms,  $P_{gas}$  (10<sup>6</sup> Nm<sup>3</sup>) is the production of gas and  $P_{oil}$  (10<sup>6</sup> tonnes) is the production of oil. If it can be considered that the VOC emitted consists of 75% methane and 25% NMVOC, then the methane and NMVOC emission can be calculated by means of Equations 3.4 and 3.5:

$$Eq 3.4 \qquad E_{extraction,NMVOC} = E_{fugitive,NMVOC} + E_{flaring,NMVOC}$$
$$= 0.25(40.2 \cdot N_{P} + 1.1 \cdot 10^{-2} P_{gas} + 8.5 \cdot 10^{-6} \cdot P_{oil}) + F_{P} \cdot EMF_{flaring,NMVOC}$$

Eq 3.5 
$$E_{extraction,CH 4} = E_{fugitive,CH 4} + E_{flaring,CH 4}$$
  
= 0.75(40.2 · N<sub>p</sub> +1.1 · 10<sup>-2</sup> P<sub>gas</sub> +8.5 · 10<sup>-6</sup> · P<sub>oil</sub>) + F<sub>p</sub> · EMF<sub>flaring,CH 4</sub>

where EMF<sub>flaring</sub> is the emission factor for flaring.

The emission from gas treatment and storage can be arrived at via Equation 3.6:

$$Eq \ 3.6 \qquad E_{GT} = E_{GT, fugitive} + EMF_{flaring} \cdot F_{GT}$$

where  $E_{GT,fugitive}$  represents the fugitive emissions,  $EMF_{flaring}$  represents the emission factor for flaring and  $F_{GT}$  is the amount of gas flared.

The loading of ships with oil is carried out both offshore and onshore and the emission is calculated by means of Equation 3.7:

$$Eq \ 3.7 \qquad E_{ships} = EMF_{ships} \cdot L_{oil}$$

where EMF<sub>ships</sub> is the emission factor for loading ships offshore and onshore and L<sub>oil</sub> is the amount of oil loaded.

The emission of VOC from the transport of oil and gas in pipelines can be calculated by means of Equation 3.8:

$$Eq 3.8$$
  $E_{pipelines} = EMF_{pipeline,gas} \cdot T_{gas} + EMF_{pipeline,oil} \cdot T_{oil}$ 

where  $T_{gas}$  and  $T_{oil}$  represent the amount of gas and oil transported, respectively, and  $EMF_{pipeline,gas}$  and  $EMF_{pipeline,olie}$  are the associated emission factors.

Emissions from the storage of crude oil can be calculated by means of Equation 3.9:

Equation 3.9 
$$E_{\tan ks} = EMF_{\tan ks} \cdot T_{oil}$$

where EMF<sub>tanks</sub> is the emission factor for storage of crude oil in tanks.

Emissions from the gas distribution network can be calculated by means of Equation 3.10:

$$Eq \ 3.10 \ E_{networks} = EMF_{network} \cdot C_{gas}$$

where  $C_{gas}$  is the amount of gas transported and EMF<sub>network</sub> is the emission factor for the transport of gas via the gas distribution network.

#### 3.2 Activity data

#### 3.2.1 Historic

Activity data used in the calculation of the emissions is provided in Table 3.1 and stems from either the Danish Energy Authority's publications (Danish Energy Authority, 2005a and 2005b) or from DONG's environmental accounts ('grønne regnskaber') (DONG, 2005). The emissions from flaring are calculated in Chapter 2, 'Stationary Combustion'.

| Table 5.1 Activity data for 2004                    |                            |           |                                 |
|-----------------------------------------------------|----------------------------|-----------|---------------------------------|
| Activity                                            | Symbol                     | Year 2005 | Ref.                            |
| Number of platforms                                 | Np                         | 48        | Danish Energy Authority (2005a) |
| Gas produced (10 <sup>6</sup> Nm3)                  | $P_{gas}$                  | 10 934    | Danish Energy Authority (2005a) |
| Oil produced (10 <sup>3</sup> m3)                   | P <sub>oil,vol</sub>       | 22 614    | Danish Energy Authority (2005a) |
| Oil produced (10 <sup>3</sup> tonne)                | Poil                       | 19 448    | Danish Energy Authority (2005a) |
| Gas transported by pipeline (10 <sup>6</sup> Nm3)   | $T_{gas}$                  | 7 384     | Danish Energy Authority (2005a) |
| Oil transported by pipeline (10 <sup>3</sup> m3)    | T <sub>oil</sub>           | 18 100    | DONG (2005)                     |
| Oil transported by pipeline (10 <sup>3</sup> tonne) | T <sub>oil</sub>           | 15 566    | DONG (2005)                     |
| Oil loaded (10 <sup>3</sup> m3)                     | L <sub>oil off-shore</sub> | 4 774     | Danish Energy Authority (2005a) |
| Oil loaded (10 <sup>3</sup> tonne)                  | L <sub>oil off-shore</sub> | 4 106     | Danish Energy Authority (2005a) |
| Oil loaded (10 <sup>3</sup> m3)                     | Loil on-shore              | 14 000    | DONG (2005)                     |
| Oil loaded (10 <sup>3</sup> tonne)                  | L <sub>oil on-shore</sub>  | 12 040    | DONG (2005)                     |
| Volume gas consumed (10 <sup>6</sup> Nm3)           | C <sub>gas</sub>           | 3 248     | Danish Energy Authority (2005b) |

Table 3.1 Activity data for 2004

Mass weight crude oil = 0.86 tonne/m<sup>3</sup>

#### 3.2.2 Prognosis

The prognosis for the production of oil and gas shown in Figure 3.1 presents a path where technological progress and new extraction possibilities are assumed (Danish Energy Authority, 2006). A decline in the extraction of oil and gas from 2004 to 2030 is foreseen in the prognosis.



Figure 3.1 Prognosis for the production of oil and gas

# 3.3 Emission factors

In the EMEP/CORINAIR Guidebook (EMEP/CORINAIR, 2003), the emission factors from different countries are provided. The Norwegian emission factors, which are also used in Norway's official emissions inventories (Flugsrud et al., 2000), have been selected for use in the projections (Table 3.2). The emissions from the storage of oil are stated in DONG's environmental accounts for 2004 (DONG, 2005) and the emission factor is calculated based on the amount of oil transported.

| Table 3.2 E | Emission factors | for 2005-2009. |
|-------------|------------------|----------------|
|-------------|------------------|----------------|

|                | $CH_4$   | Unit               | Ref.                |
|----------------|----------|--------------------|---------------------|
| Ships offshore | 0.00005  | Fraction of loaded | EMEP/CORINAIR, 2003 |
| Ships onshore  | 0.000002 | Fraction of loaded | EMEP/CORINAIR, 2003 |
| Pipeline, gas  | 11.51    | kg/103m3           | Karll, 2005         |
| Oil tanks      | 113      | kg/103m3           | DONG, 2005          |
| Network        | 11,37    | kg/106m3           | Karll, 2005         |

According to the environment department of the local authority (Vejle Amt, 2005), stricter regulation of the emissions from oil tanks and onshore loading of ships is going to be introduced. The emission factors for these sources have therefore decreased by 99 % and 46 % from 2010. The emission factors from 2010 to 2030 are listed in Table 3.3.

Table 3.3 Emission factors for 2010-2030

|                | CH₄        | Unit               | Ref.                                    |
|----------------|------------|--------------------|-----------------------------------------|
| Ships offshore | 0.00005    | Fraction of loaded | EMEP/CORINAIR, 2003                     |
| Ships onshore  | 0.00000108 | Fraction of loaded | EMEP/CORINAIR, 2003 and Vejle Amt, 2005 |
| Pipeline, gas  | 11.51      | kg/103m3           | Karll, 2005                             |
| Oil tanks      | 1,13       | kg/103m3           | DONG, 2005 and Vejle Amt 2005           |
| Network        | 11,37      | kg/106m3           | Karll, 2005                             |

# 3.4 Emissions

The emissions for  $CH_4$  are calculated based on the activity data in Table 3.1 and the emission factors in Tables 3.2 and 3.3.

| able 3.4 CH <sub>4</sub> emissions (tonnes) |       |       |  |  |  |  |
|---------------------------------------------|-------|-------|--|--|--|--|
| Extraction:                                 | 2004  | 2030  |  |  |  |  |
| Fugitive                                    | 1 645 | 10 19 |  |  |  |  |
| Gas treatment and storage:                  |       |       |  |  |  |  |
| Fugitive + Flaring                          | 60    | 31    |  |  |  |  |
| Pipelines:                                  |       |       |  |  |  |  |
| Gas                                         | 74    | 31    |  |  |  |  |
| Oil                                         | n.a.  | n.a.  |  |  |  |  |
| Network                                     | 30    | 12    |  |  |  |  |
| Oil tanks                                   | 2 193 | 14    |  |  |  |  |
| Total minus ships                           | 4 020 | 1 108 |  |  |  |  |
| Ships:                                      |       |       |  |  |  |  |
| Offshore                                    | 158   | 140   |  |  |  |  |
| Onshore                                     | 25    | 9     |  |  |  |  |
| Total                                       | 4 203 | 1 257 |  |  |  |  |

Table 3.4 CH<sub>4</sub> emissions (tonnes)



Figure 3.2 CH<sub>4</sub> emissions from oil and gas production

Table 3.5 CH<sub>4</sub> emissions (ktonnes)

| IPCC name                   | IPCC code | 1990 | 2000 | 2005 | '2010' | 2015' | 2020 | 2025 | 2030 |
|-----------------------------|-----------|------|------|------|--------|-------|------|------|------|
| Fugitive emissions from oil | 1B2a      | 1.54 | 3.48 | 3,70 | 2,18   | 1,51  | 1,43 | 1,18 | 1,18 |
| Fugitive emissions from gas | 1B2b      | 0.27 | 0.22 | 0.17 | 0.17   | 0.15  | 0.10 | 0.07 | 0.07 |
| Total                       |           | 1.81 | 3.70 | 3.86 | 2.35   | 1.65  | 1.54 | 1.26 | 1.26 |

| Table 3.6 | CH <sub>4</sub> emissions | (ktonnes | CO <sub>2</sub> equiv. | ) |
|-----------|---------------------------|----------|------------------------|---|
|-----------|---------------------------|----------|------------------------|---|

| IPCC name                   | IPCC code | 1990 | 2000 | 2005 | '2010' | '2015' | 2020 | 2025 | 2030 |
|-----------------------------|-----------|------|------|------|--------|--------|------|------|------|
| Fugitive emissions from oil | 1B2a      | 32   | 73   | 78   | 46     | 32     | 30   | 25   | 25   |
| Fugitive emissions from gas | 1B2b      | 6    | 5    | 4    | 4      | 3      | 2    | 2    | 2    |
| Total                       |           | 265  | 600  | 81   | 49     | 35     | 32   | 26   | 26   |

The decline in emissions reflects the expected environmental regulation in emissions from oil tanks and onshore loading of ships and decreasing extraction of oil and gas. It has been assumed that the number of platforms falls in line with the decline in extraction. The emission factors are assumed to be the same as those used in the historic inventories except for oil tanks and onshore loading of ships.

#### 3.5 Model description

The model for the offshore industry is created in Microsoft Excel and the worksheets used in the model are collected in the 'Offshore model' The names and content of the tables are listed in Table 3.6.

Table 3.7 Tables in the 'Offshore model'.

| Name                 | Content                                                                                                                                     |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Activity data        | Historically data for 2000 (Table 2.2.1) plus estimated activity rates for 2001 to 2010 based on data in table 'Projected pro-<br>duction'. |
| Projected production | Projected production of oil and gas for 2001 to 2010.                                                                                       |
| EMF                  | Emission factors for NMVOC for all activities.                                                                                              |
| Emissions            | Projected emissions for 2001 to 2010 based on data in tables<br>'Activity data' and 'Emission factors'.                                     |

Changing the data in the input data tables will automatically update the projected emissions.

# References

Danish Energy Authority (2005a): Oil and Gas Production in Denmark 2004. <u>www.ens.dk</u>.

Danish Energy Authority (2005b): Energy Statistics (Energistatistik. Danmarks produktion og forbrug af energi (in Danish)). <u>www.ens.dk</u>

Danish Energy Authority (2006): Energy projections 2005-2030, October 2006.

DONG (2005): DONG's Environmental accounts (Miljø – og sikkerhedsrapport (in Danish)).

EMEP/CORINAIR (2003): EMEP/CORINAIR Emission Inventory Guidebook 3rd Edition September 2003 Update, Technical Report no 20, European Environmental Agency, Copenhagen. http://reports. eea.eu.int/EMEPCORINAIR4/en.

Flugsrud, K., Gjerald, E., Haakonson, G., Holtskog, S., Høie, H., Rypdal, K., Tornsjø, B. and Weidemann, F. (2000): The Norwegian Emission Inventory, Statistics Norway and Norwegian Pollution Control Authority. http://www.ssb.no/emner/01/90/rapp\_200001/rapp\_200001.pdf

Karll, B., (2005): Personal communication, e-mail 17 November 2003, Danish Technology Centre.

Vejle Amt, 2005: Pers. communication.

# 4 Industrial processes

# 4.1 Sources

A range of sources is covered in the projection of process emissions to 2030 (see Table 4.1).

| IPCC |                   | Sources/processes                                    | SNAP code |
|------|-------------------|------------------------------------------------------|-----------|
| code |                   |                                                      |           |
| 2A   | Mineral products  | Cement                                               | 04 06 12  |
|      |                   | Quicklime and bricks                                 |           |
|      |                   | - Quicklime production                               | 04 06 14  |
|      |                   | - Brick production                                   | 04 06 14  |
|      |                   | - Production of expanded clay products               | 04 06 14  |
|      |                   | Glass and glass wool                                 |           |
|      |                   | - Production of packaging glass                      | 04 06 13  |
|      |                   | - Glass wool production                              | 04 06 13  |
|      |                   | Other processes                                      |           |
|      |                   | - Flue gas cleaning                                  | 04 06 18  |
|      |                   | - Mineral wool production                            | 04 06 18  |
|      |                   | - Quicklime production for use in chemical processes | 04 06 18  |
|      |                   | Asphalt products                                     |           |
|      |                   | - Roof covering with asphalt products                | 04 06 10  |
|      |                   | - Road surfacing with asphalt                        | 04 06 11  |
| 2B   | Chemical industry | Catalysts/fertilisers                                | 04 04 16  |
| 2C   | Metal production  | Electro-steel works                                  | 04 02 07  |

The projection of emissions from industrial processes is based on the national emissions inventory (Illerup et al., 2006).

# 4.2 Projections

The results of projection of the greenhouse gas emission are presented in Table 4.2. The methodologies used are described below.

Aalborg Portland was contacted with regard to expectations for cement production in the future and the information was provided that budgeted production for 2007 was 2,786,800 tonne clinker (Aalborg Portland, 2005b). As production in 2004 totalled 2,861,471 tonne cement equivalents (tce) (Aalborg Portland, 2005a), the production forecast was already reached in 2004. The  $CO_2$  emission is, therefore, regarded as constant at the 2004 level for the years 2005-2030.

No forecasts are available for projecting the production of quicklime, bricks and expanded clay products to 2030. The emission from these products is, therefore, assumed to be constant at the 2004 level for the years 2005-2030.

No forecasts are available for the production of glass and glass wool to 2030. The emission from these processes is, therefore, assumed to be constant at a level calculated as the average for the period 1990-2003.

'Other processes' includes  $CO_2$  emissions from the use of lime to refine sugar, for the production of mineral wool and for flue gas cleaning. The emissions from sugar refining and the production of mineral wool are assumed to be constant at the 2004 level over the period 2005-2030. The emission from flue gas cleaning is projected on the basis of expected future consumption of coal and waste in the energy sector (Danish Energy Authority 2005, 2006). Extrapolation factors are shown in Table 4.2.

| ( · · · · · · · · · · · · · · · · · · · |      |                 | ( //      |       |           |
|-----------------------------------------|------|-----------------|-----------|-------|-----------|
|                                         | Coal | SO <sub>2</sub> | Extrapol. | Waste | Extrapol. |
|                                         | TWh  |                 |           | TWh   |           |
| 2004 <sup>1</sup>                       | 47.2 |                 |           | 10.3  |           |
| 2005                                    | 26.1 | 18.4            | 0.55      | 10.4  | 1.02      |
| 2006                                    | 57.2 | 32.6            | 1.21      | 10.9  | 1.06      |
| 2007                                    | 57.5 | 29.7            | 1.22      | 10.9  | 1.06      |
| 2008                                    | 59.8 | 22.9            | 1.27      | 10.9  | 1.06      |
| 2009                                    | 56.1 | 22.5            | 1.19      | 10.9  | 1.06      |
| 2010                                    | 43.9 | 20.3            | 0.93      | 10.8  | 1.05      |
| 2011                                    | 46.0 | 19.0            | 0.97      | 10.8  | 1.05      |
| 2012                                    | 47.2 | 19.2            | 1.00      | 10.8  | 1.05      |
| 2013                                    | 49.3 | 19.4            | 1.04      | 10.7  | 1.04      |
| 2014                                    | 48.8 | 19.2            | 1.03      | 10.7  | 1.04      |
| 2015                                    | 49.3 | 20.0            | 1.04      | 10.7  | 1.04      |
| 2016                                    | 41.6 | 21.6            | 0.88      | 10.6  | 1.03      |
| 2017                                    | 41.7 | 21.0            | 0.88      | 11.0  | 1.08      |
| 2018                                    | 40.7 | 20.6            | 0.86      | 11.2  | 1.09      |
| 2019                                    | 36.2 | 21.4            | 0.77      | 11.3  | 1.10      |
| 2020                                    | 33.3 | 20.7            | 0.71      | 11.8  | 1.15      |
| 2021                                    | 32.6 | 20.1            | 0.69      | 12.1  | 1.18      |
| 2022                                    | 33.2 | 20.0            | 0.70      | 12.1  | 1.18      |
| 2023                                    | 32.0 | 19.4            | 0.68      | 12.2  | 1.18      |
| 2024                                    | 32.1 | 19.6            | 0.68      | 12.5  | 1.22      |
| 2025                                    | 30.4 | 18.6            | 0.64      | 12.5  | 1.22      |
| 2026                                    | 26.4 | 19.3            | 0.56      | 12.7  | 1.23      |
| 2027                                    | 26.2 | 19.3            | 0.55      | 12.7  | 1.23      |
| 2028                                    | 25.7 | 19.4            | 0.54      | 12.7  | 1.24      |
| 2029                                    | 25.9 | 19.4            | 0.55      | 12.7  | 1.24      |
| 2030                                    | 26.1 | 19.6            | 0.55      | 12.8  | 1.24      |
|                                         |      |                 |           |       |           |

Table 4.2Extrapolation factors for estimation of CO2 emissions from flue gas cleaning(based on projections by Danish Energy Authority (2006))

Energy Statistics 2004 (Danish Energy Authority, 2005).

For chemical processes, the emission in CO<sub>2</sub> equivalents declines sharply in 2004 as the production of nitric acid ceased in mid-2004 (<u>http://www.kemira-growhow.com/dk</u>; Kemira-Growhow, 2004). For the production of catalysts/fertilisers, the emission is assumed to lie at the same level as in the period 1990-2003.

Emissions from steelworks are, in the years 2002-2004, stated as 0 as production was ceased in spring 2002. The production of steel sheets/plates was reopened by DanSteel in 2003, the production of steel

bars was reopened by DanScan Metal in March 2004, and the electro steelwork was reopened by DanScan Steel in January 2005. The production at DanScan Metal and Steel ceased in the end of 2005, and in June 2006 DanScan Metal was take over by Duferco; the future for the electro steelwork (DanScan Steel) is still uncertain. Treatment of steel scrap and, thereby, the process-related emission of  $CO_2$  is assumed to be at the same level as when production ceased.

|      | 2A                 | 2B                 | 2C                 | 2B     | 2B            | Total                      |
|------|--------------------|--------------------|--------------------|--------|---------------|----------------------------|
|      | kt CO <sub>2</sub> | kt CO <sub>2</sub> | kt CO <sub>2</sub> | kt N₂O | kt CO2-equiv. | kt CO <sub>2</sub> -equiv. |
| 1990 | 1 069              | 0.80               | 28.4               | 3.36   | 1 043         | 2 141                      |
| 1991 | 1 247              | 0.80               | 28.4               | 3.08   | 955           | 2 232                      |
| 1992 | 1 367              | 0.80               | 28.4               | 2.72   | 844           | 2 239                      |
| 1993 | 1 384              | 0.80               | 31.0               | 2.56   | 795           | 2 211                      |
| 1994 | 1 408              | 0.80               | 33.5               | 2.60   | 807           | 2 248                      |
| 1995 | 1 406              | 0.80               | 38.6               | 2.92   | 904           | 2 349                      |
| 1996 | 1 515              | 1.45               | 35.2               | 2.69   | 834           | 2 385                      |
| 1997 | 1 682              | 0.87               | 35.0               | 2.74   | 848           | 2 566                      |
| 1998 | 1 679              | 0.56               | 42.2               | 2.60   | 807           | 2 528                      |
| 1999 | 1 606              | 0.58               | 43.0               | 3.07   | 950           | 2 600                      |
| 2000 | 1 635              | 0.65               | 40.7               | 3.24   | 1 004         | 2 680                      |
| 2001 | 1 658              | 0.83               | 46.7               | 2.86   | 885           | 2 591                      |
| 2002 | 1 694              | 0.55               | 0.0                | 2.50   | 774           | 2 469                      |
| 2003 | 1 569              | 1.05               | 0.0                | 2.89   | 896           | 2 466                      |
| 2004 | 1 728              | 3.01               | 0.0                | 1.45   | 448           | 2 179                      |
| 2005 | 1 703              | 3.00               | 45.0               | 0      | 0             | 1 751                      |
| 2006 | 1 740              | 3.00               | 45.0               | 0      | 0             | 1 788                      |
| 2007 | 1 740              | 3.00               | 45.0               | 0      | 0             | 2 141                      |
| 2008 | 1 743              | 3.00               | 45.0               | 0      | 0             | 1 791                      |
| 2009 | 1 738              | 3.00               | 45.0               | 0      | 0             | 1 786                      |
| 2010 | 1 724              | 3.00               | 45.0               | 0      | 0             | 1 772                      |
| 2011 | 1 726              | 3.00               | 45.0               | 0      | 0             | 1 774                      |
| 2012 | 1 728              | 3.00               | 45.0               | 0      | 0             | 1 776                      |
| 2013 | 1 730              | 3.00               | 45.0               | 0      | 0             | 1 778                      |
| 2014 | 1 730              | 3.00               | 45.0               | 0      | 0             | 1 778                      |
| 2015 | 1 730              | 3.00               | 45.0               | 0      | 0             | 1 778                      |
| 2016 | 1 721              | 3.00               | 45.0               | 0      | 0             | 1 769                      |
| 2017 | 1 722              | 3.00               | 45.0               | 0      | 0             | 1 770                      |
| 2018 | 1 720              | 3.00               | 45.0               | 0      | 0             | 1 768                      |
| 2019 | 1 715              | 3.00               | 45.0               | 0      | 0             | 1 763                      |
| 2020 | 1 712              | 3.00               | 45.0               | 0      | 0             | 1 760                      |
| 2021 | 1 711              | 3.00               | 45.0               | 0      | 0             | 1 759                      |
| 2022 | 1 712              | 3.00               | 45.0               | 0      | 0             | 1 760                      |
| 2023 | 1 710              | 3.00               | 45.0               | 0      | 0             | 1 758                      |
| 2024 | 1 710              | 3.00               | 45.0               | 0      | 0             | 1 758                      |
| 2025 | 1 709              | 3.00               | 45.0               | 0      | 0             | 1 757                      |
| 2026 | 1 704              | 3.00               | 45.0               | 0      | 0             | 1 752                      |
| 2027 | 1 704              | 3.00               | 45.0               | 0      | 0             | 1 752                      |
| 2028 | 1 703              | 3.00               | 45.0               | 0      | 0             | 1 751                      |
| 2029 | 1 703              | 3.00               | 45.0               | 0      | 0             | 1 751                      |
| 2030 | 1 704              | 3.00               | 45.0               | 0      | 0             | 1 752                      |

 Table 4.3
 Projection of process emissions

The results are summarised under the main IPCC groupings in Table 4.4.

 Table 4.4
 Summary of results of projection of process emissions

|                        |                              | 1990  | 2000  | 2005  | '2010'<br>2008-2012 | '2015'<br>2013-2017 | 2020  | 2025  |
|------------------------|------------------------------|-------|-------|-------|---------------------|---------------------|-------|-------|
| 2A Mineral products    | kt CO <sub>2</sub> -eq.      | 1 069 | 1 635 | 1 703 | 1 732               | 1 727               | 1 712 | 1 709 |
| 2B Chemica<br>industry | l<br>kt CO <sub>2</sub> -eq. | 1 044 | 1 004 | 3.00  | 3.00                | 3.00                | 3.00  | 3.00  |
| 2C Metal production    | kt CO <sub>2</sub> -eq.      | 28.4  | 40.7  | 45.0  | 45.0                | 45.0                | 45.0  | 45.0  |

### References

Danish Energy Authority (2006): Energy projections 2005-2030, October 2006.

Danish Energy Authority (2005): Energistatistik. Danmarks produktion og forbrug af energi 2004 (in Danish). <u>www.ens.dk</u>

Illerup, J.B., Lyck, E., Nielsen, O.-K., Mikkelsen, M.H., Hoffmann, L., Gyldenkærne, S., Nielsen, M., Sørensen, P.B., Fauser, P., Thomsen, M. & Winther, M. (2006). Denmark's National Inventory Report 2006. Submitted under the United Nations Framework Convention on Climate Change, 1990-2004. NERI Technical Report No. 589.

Aalborg Portland (2005a). Environmental report 2004.

Aalborg Portland (2005b). Henrik Møller Thomsen, personal communication, 9 March 2005.

# 5 Transport

In the forecast model all activity rates and emissions are defined in SNAP sector categories (Selected Nomenclature for Air Pollution) according to the CORINAIR system. The aggregation to the sector codes used for both the UNFCCC and UNECE Conventions is based on a correspondence list between SNAP and IPCC classification codes (CRF) shown in Table 5.1 (mobile sources only).

 Table 5.1
 SNAP – CRF correspondence table for transport

| •                                          |                                               |
|--------------------------------------------|-----------------------------------------------|
| SNAP classification                        | IPCC classification                           |
| 07 Road transport                          | 1A3b Transport-Road                           |
| 0801 Military                              | 1A5 Other                                     |
| 0802 Railways                              | 1A3c Railways                                 |
| 0803 Inland waterways                      | 1A3d Transport-Navigation                     |
| 080402 National sea traffic                | 1A3d Transport-Navigation                     |
| 080403 National fishing                    | 1A4c Agriculture/forestry/fisheries           |
| 080404 International sea traffic           | 1A3d Transport-Navigation (international)     |
| 080501 Dom. airport traffic (LTO < 1000 m) | 1A3a Transport-Civil aviation                 |
| 080502 Int. airport traffic (LTO < 1000 m) | 1A3a Transport-Civil aviation (international) |
| 080503 Dom. cruise traffic (> 1000 m)      | 1A3a Transport-Civil aviation                 |
| 080504 Int. cruise traffic (> 1000 m)      | 1A3a Transport-Civil aviation (international) |
| 0806 Agriculture                           | 1A4c Agriculture/forestry/fisheries           |
| 0807 Forestry                              | 1A4c Agriculture/forestry/fisheries           |
| 0808 Industry                              | 1A2f Industry-Other                           |
| 0809 Household and gardening               | 1A4b Residential                              |

Military transport activities (land and air) refer to the CRF sector Other (1A5), while the Transport-Navigation sector (1A3d) comprises national sea transport (ship movements between two Danish ports) and recreational craft. The working machinery and materiel in industry is grouped in Industry-Other (1A2f), while agricultural and forestry machinery is accounted for in the Agriculture/forestry/fisheries (1A4c) sector together with fishing activities. The description of methodologies and references for the transport part of the Danish inventory is given in two sections; one for road transport and one for the other mobile sources.

# 5.1 Methodology and references for road transport

For road transport the emission calculations are made with a model developed by NERI, using the detailed methodology from the European COPERT III model. The latter model approach is explained by Ntziachristos et al. (2000) and EMEP/CORINAIR (2003). In COPERT III fuel use and emission simulations can be made for operationally hot engines taking into account gradually stricter emission standards and emission degradation due to catalyst wear. Furthermore, the emission effects of cold start and evaporation are simulated.

#### 5.1.1 Vehicle fleet and mileage data

Corresponding to the COPERT fleet classification, all present and future vehicles in the Danish traffic fleet are grouped into vehicle classes, subclasses and layers. The layer classification is a further division of vehicle sub-classes into groups of vehicles with the same average fuel use and emission behaviour according to EU emission legislation levels. Table 5.2 gives an overview of the different model classes and sub-classes, and the layer level with implementation years are shown in Annex 5.I.

|                 |           |                    | Tri   | p speed [ | km/h]   | Mile  | eage spli | t [%]   |
|-----------------|-----------|--------------------|-------|-----------|---------|-------|-----------|---------|
| Vehicle classes | Fuel type | Engine size/weight | Urban | Rural     | Highway | Urban | Rural     | Highway |
| PC              | Gasoline  | < <b>1</b> .4 l.   | 40    | 70        | 100     | 35    | 46        | 19      |
| PC              | Gasoline  | 1.4 – 2 l.         | 40    | 70        | 100     | 35    | 46        | 19      |
| PC              | Gasoline  | > 2 I.             | 40    | 70        | 100     | 35    | 46        | 19      |
| PC              | Diesel    | < 2 l.             | 40    | 70        | 100     | 35    | 46        | 19      |
| PC              | Diesel    | > 2 l.             | 40    | 70        | 100     | 35    | 46        | 19      |
| PC              | LPG       |                    | 40    | 70        | 100     | 35    | 46        | 19      |
| PC              | 2-stroke  |                    | 40    | 70        | 100     | 35    | 46        | 19      |
| LDV             | Gasoline  |                    | 40    | 65        | 80      | 35    | 50        | 15      |
| LDV             | Diesel    |                    | 40    | 65        | 80      | 35    | 50        | 15      |
| Trucks          | Gasoline  |                    | 35    | 60        | 80      | 32    | 47        | 21      |
| Trucks          | Diesel    | 3.5 – 7.5 tonnes   | 35    | 60        | 80      | 32    | 47        | 21      |
| Trucks          | Diesel    | 7.5 – 16 tonnes    | 35    | 60        | 80      | 32    | 47        | 21      |
| Trucks          | Diesel    | 16 – 32 tonnes     | 35    | 60        | 80      | 19    | 45        | 36      |
| Trucks          | Diesel    | > 32 tonnes        | 35    | 60        | 80      | 19    | 45        | 36      |
| Urban buses     | Diesel    |                    | 30    | 50        | 70      | 51    | 41        | 8       |
| Coaches         | Diesel    |                    | 35    | 60        | 80      | 32    | 47        | 21      |
| Mopeds          | Gasoline  |                    | 30    | 30        | -       | 81    | 19        | 0       |
| Motorcycles     | Gasoline  | 2 stroke           | 40    | 70        | 100     | 47    | 39        | 14      |
| Motorcycles     | Gasoline  | < 250 cc.          | 40    | 70        | 100     | 47    | 39        | 14      |
| Motorcycles     | Gasoline  | 250 – 750 cc.      | 40    | 70        | 100     | 47    | 39        | 14      |
| Motorcycles     | Gasoline  | > 750 cc.          | 40    | 70        | 100     | 47    | 39        | 14      |

Table 5.2 Model vehicle classes and sub-classes, trip speeds and mileage split

Information on the historical vehicle stock and annual mileage is obtained from the Danish Road Directorate (Ekman, 2005a). This covers data for the number of vehicles and annual mileage per first registration year for all vehicle sub-classes, and mileage split between urban, rural and highway driving and the respective average speeds. Additional data for the moped fleet and motorcycle fleet disaggregation information is given by The National Motorcycle Association (Markamp, 2005).

To support the emission projections carried out by Illerup et al. (2002), a vehicle fleet and mileage prognosis was produced by the Danish Road Directorate. The general approach was to assume new sales of vehicles and the mean lifespan of vehicles in the years contained in the forecast period, by undertaking historical data analyses and using economic parameters. Subsequently, the prognosis data has been modified for later Danish emission forecast projects. The latest data adjustments were made by Ekman (2005b) as a part of the present emission forecast.



Figure 5.1 Number of vehicles in sub-classes in 1985-2030

The vehicle numbers per sub-class are shown in Figure 5.1. The engine size differentiation is associated with some uncertainty.

The vehicle numbers are summed up in layers for each year (Figure 5.2) by using the correspondence between layers and first registration year:

$$N_{j,y} = \sum_{i=FYear(j)}^{LYear(j)} N_{i,y}$$
(1)

where N = number of vehicles, j = layer, y = year, i = first registration year.

Weighted annual mileages per layer are calculated as the sum of all mileage driven per first registration year divided with the total number of vehicles in the specific layer.

$$M_{j,y} = \frac{\sum_{i=FYear(j)}^{LYear(j)} N_{i,y} \cdot M_{i,y}}{\sum_{i=FYear(j)}^{LYear(j)} N_{i,y}}$$
(2)

Vehicle numbers and weighted annual mileages per layer are shown in Annex 5.1 for 2005-2030. The trends in vehicle numbers per layer are also shown in Figure 5.2. The latter figure shows how vehicles complying with the gradually stricter EU emission levels (EURO I, II, III etc.) are introduced into the Danish motor fleet in the forecast period.



Figure 5.2 Layer distribution of vehicle numbers per vehicle type in 2005-2030

#### 5.1.2 Emission legislation

No specific emission legislation exists for  $CO_2$ ; an EU strategy has, however, been formulated to improve the fuel efficiency for new vehicles sold in the EU. The goal is to bring down the average  $CO_2$  emissions to 120 g/km in 2010. The means by which the  $CO_2$  target is to be met are:

- An agreement with the car manufacturers in Europe, Japan and Korea that new private cars sold in the EU in 2008/2009 emit, on average, CO<sub>2</sub> emissions of 140 or less g/km.
- Energy labelling information from EU member states to car buyers.
- The use of fiscal instruments to promote fuel efficient cars.

The test cycle used in the EU for measuring fuel is the NEDC (New European Driving Cycle) used also for emission testing. The NEDC cycle consists of two parts, the first part being a 4-times repetition (driving length: 4 km) of the ECE test cycle, the so-called urban driving cycle (average speed: 19 km/h). The second part of the test is the EUDC (Extra Urban Driving Cycle) test driving segment, simulating the fuel use under rural and highway driving conditions. The driving length in the EUDC is 7 km at an average speed of 63 km/h. More information regarding the fuel measurement procedure can be found in the EU Directive  $\frac{80/1268/E@F}{2}$ .

For NO<sub>X</sub>, VOC, CO and TSP, the emissions from road transport vehicles have to comply with the various EU directives listed in Table 5.3. Even though the directives do not regulate the emissions of  $CH_4$  and  $N_2O$ , the VOC emission limits influence the emissions of  $CH_4$ , the latter being a part of total VOC. The specific emission limits can be seen in Winther (2006).

| Vehicle category                   | Emission layer | EU Directive    | First re | eg. year |
|------------------------------------|----------------|-----------------|----------|----------|
|                                    |                |                 | start    | end      |
| Private cars (gasoline)            | PRE ECE        |                 | 0        | 1969     |
|                                    | ECE 15/00-01   | 70/220 - 74/290 | 1970     | 1978     |
|                                    | ECE 15/02      | 77/102          | 1979     | 1980     |
|                                    | ECE 15/03      | 78/665          | 1981     | 1985     |
|                                    | ECE 15/04      | 83/351          | 1986     | 1990     |
|                                    | Euro I         | 91/441          | 1991     | 1996     |
|                                    | Euro II        | 94/12           | 1997     | 2000     |
|                                    | Euro III       | 98/69           | 2001     | 2005     |
|                                    | Euro IV        | 98/69           | 2006     | 9999     |
| Private cars (diesel and LPG)      |                | Conventional    | 0        | 1990     |
|                                    | Euro I         | 91/441          | 1991     | 1996     |
|                                    | Euro II        | 94/12           | 1997     | 2000     |
|                                    | Euro III       | 98/69           | 2001     | 2005     |
|                                    | Euro IV        | 98/69           | 2006     | 2010     |
|                                    | Euro V         |                 | 2011     | 9999     |
| Light duty veh. (gasoline and die- |                | Conventional    | 0        | 1994     |
|                                    | Euro I         | 93/59           | 1995     | 1998     |
|                                    | Euro II        | 96/69           | 1999     | 2001     |
|                                    | Euro III       | 98/69           | 2002     | 2006     |
|                                    | Euro IV        | 98/69           | 2007     | 9999     |
|                                    | Euro V         |                 | 2012     | 9999     |
| Heavy duty vehicles                |                | Conventional    | 0        | 1993     |
|                                    | Euro I         | 91/542          | 1994     | 1996     |
|                                    | Euro II        | 91/542          | 1997     | 2001     |
|                                    | Euro III       | 1999/96         | 2002     | 2006     |
|                                    | Euro IV        | 1999/96         | 2007     | 2009     |
|                                    | Euro V         | 1999/96         | 2010     | 9999     |
| Mopeds                             |                | Conventional    | 0        | 1999     |
|                                    | Euro I         | 97/24           | 2000     | 2002     |
|                                    | Euro II        | 97/24           | 2003     | 9999     |
| Motor cycles                       |                | Conventional    | 0        | 1999     |
|                                    | Euro I         | 97/24           | 2000     | 2003     |
|                                    | Euro II        | 2002/51         | 2004     | 2006     |
|                                    | Euro III       | 2002/51         | 2007     | 9999     |

 Table 5.3
 Overview of the existing EU emission directives for road transport vehicles

For passenger cars and light duty vehicles the emission approval tests are made on a chassis dynamometer, and for Euro I-IV vehicles the EU NEDC test cycle is used (see Nørgaard and Hansen, 2004). The emission directives distinguish between three vehicle classes: passenger cars and light duty vehicles (<1305 kg), light duty vehicles (1305-1760 kg) and light duty vehicles (>1760 kg).

In practice the emissions from vehicles in traffic are different from the legislation limit values and, therefore, the latter figures are considered

to be too inaccurate for total emission calculations. A major constraint is that the emission approval test conditions only in a minor way reflect the large variety of emission influencing factors in real traffic situations, such as cumulated mileage driven, engine and exhaust after treatment maintenance levels, and driving behaviour.

Therefore, in order to represent the Danish fleet and to support average national emission estimates, emission factors must be chosen which derive from numerous emissions measurements, using a broad range of real world driving patterns and sufficient numbers of test vehicles. It is similarly important to have separate fuel use and emission data for cold start emission calculations and gasoline evaporation (hydrocarbons).

For heavy duty vehicles (trucks and buses) the emission limits are given in g/kWh, and the measurements are carried out for engines in a test bench, using the EU ESC (European Stationary Cycle) and ETC (European Transient Cycle) test cycles, depending on the Euro norm and the exhaust gas after treatment system installed. A description of the test cycles are given by Nørgaard and Hansen (2004). Measurement results in g/kWh from emission approval tests cannot be directly used for inventory work. Instead, emission factors used for national estimates must be transformed into g/km, and derived from a sufficient number of measurements which represent the different vehicle size classes, Euro engine levels and real world variations in driving behaviour.

#### 5.1.3 Fuel use and emission factors

Trip speed dependent basis factors for fuel use and emissions are taken from the COPERT model using trip speeds as shown in Table 5.2. The factors can be seen in Winther (2006). The scientific basis for COPERT III is fuel use and emission information from various European measurement programmes, transformed into trip speed dependent fuel use and emission factors for all vehicle categories and layers. For passenger cars and light duty vehicles, real measurement results are behind the emission factors for Euro I vehicles and before, whereas the experimental basis for heavy duty vehicles are computer simulated emission factors for pre Euro I engines. In both cases, the emission factors for later engine technologies are produced by using reduction factors (see Winther, 2006). The latter factors are determined by assessing the EU emission limits and the relevant emission approval test conditions, for each vehicle type and Euro class.

#### 5.1.4 Fuel use and emission calculations

The fuel use and emissions are calculated for operationally hot engines and for engines during cold start, and a final fuel balance adjustment is made in order to account for the statistical fuel sold according to Danish energy statistics.

The calculation procedure for hot engines is to combine basis fuel use and emission factors (see Winther, 2006), number of vehicles and annual mileage numbers (Annex 5.1), and mileage road type shares (from Table 5.2). For additional description of the hot and cold start calculations and fuel balance approach, please refer to Winther (2006). Fuel use and emission results per layer and vehicle type, respectively, are shown in Annex 5.1 from 2005-2030. The layer specific emission factors (km based) for  $CO_2$ ,  $CH_4$  and  $N_2O$  derived from the basis input data are also shown in Annex 5.1.

# 5.2 Other mobile sources

The other mobile sources are divided into several sub-sectors; sea transport, fishery, air traffic, railways, military and the working machinery and materiel in the industry, forestry, agriculture and household and gardening sectors. The emission calculations are made using the detailed method as described in the EMEP/CORINAIR Emission Inventory Guidebook (EMEP/CORINAIR, 2003) for air traffic and off road working machinery and equipment, while for the remaining sectors the simple method is used.

# 5.2.1 Activity data

# Air traffic

For historical years, the activity data for air traffic consists of air traffic statistics provided by the Danish Civil Aviation Agency (CAA-DK) and Copenhagen Airport. For 2001-2004, records are given per flight by CAA-DK as data for aircraft type, and origin and destination airports. For inventory years prior to 2001 detailed LTO/aircraft type statistics are obtained from Copenhagen Airport (for this airport only), while information of total take-off numbers for other Danish airports is provided by CAA-DK. Fuel statistics for jet fuel use and aviation gasoline are obtained from the Danish energy statistics (DEA, 2005).

No forecast of air traffic movements is available as input to the emission projection calculations. Instead, a forecast of total fuel used by Danish domestic flights from 2005-2030 is used as activity data in the projection period.

Prior to emission calculations for historical years, the aircraft types are grouped into a smaller number of representative aircraft for which fuel use and emission data exist in the EMEP/CORINAIR databank. In this procedure the actual aircraft types are classified according to their overall aircraft type (jets, turbo props, helicopters and piston engine). Secondly, information on the aircraft MTOM (Maximum Take-Off Mass) and number of engines are used to append a representative aircraft to the aircraft type in question. A more thorough explanation is given in Winther (2001a, b).

# Non road working machinery

Non road working machinery and equipment are used in agriculture, forestry and industry, for household/gardening purposes and inland waterways (recreational craft). The specific machinery types comprised in the Danish inventory are shown in Table 5.4.

| Table 5.4 Ma            | comprised in the Danish                                                                 | non road inventory                                                                                 |
|-------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Sector                  | Diesel                                                                                  | Gasoline/LPG                                                                                       |
| Agriculture             | Tractors, harvesters, machine pool, other                                               | ATV's (All Terrain Vehicles), other                                                                |
| Forestry                | Silv. tractors, harvesters, forwarders, chippers                                        | -                                                                                                  |
| Industry                | Construction machinery, fork lifts,<br>building and construction, Airport<br>GSE, other | Fork lifts (LPG), building and con-<br>struction, other                                            |
| Household/<br>gardening | -                                                                                       | Riders, lawn movers, chain saws,<br>cultivators, shrub clearers, hedge<br>cutters, trimmers, other |

 Table 5.4
 Machinery types comprised in the Danish non road inventory

A new Danish research project has provided updated information of the number of different types of machines, their load factors, engine sizes and annual working hours (Winther et al., 2006). Please refer to the latter report for detailed information about activity data for non road machinery types.

#### Other sectors

The activity data for military, railways, sea transport and fishery consists of fuel use information from DEA (2005). For sea transport the basis is fuel sold in Danish ports. Depending on the destination of the vessels in question, the traffic is defined as either national or international, as prescribed by the IPCC guidelines. A new Danish research project has carried out detailed calculations for Danish Ferries, and more information of ferry activity data can be obtained from Winther (2007).

For all other mobile sectors, fuel use figures are given in Annex 5.2 for the years 2005-2030 in both CollectER and CRF formats.

#### 5.2.2 Emission legislation

For the engines used by other mobile sources, no legislation limits exist for specific fuel use or the directly fuel dependent emissions of CO<sub>2</sub>. The engine emissions, however, have to comply with the general emission legislation limits agreed by the EU and, except for ships (no VOC exhaust emission regulation), the VOC emission limits influence the emissions of CH<sub>4</sub>, the latter emissions being a part of total VOC.

For non road working machinery and equipment, recreational craft and railway locomotives/motor cars, the emission directives list specific emission limit values (g/kWh) for CO, VOC, NO<sub>X</sub> (or VOC + NO<sub>X</sub>) and TSP, depending on engine size (kW for diesel, ccm for gasoline) and date of implementation (referring to engine market date).

For diesel, the directives 97/68 and 2004/26 relate to non road machinery other than agricultural and forestry tractors, and the directives have different implementation dates for machinery operating under transient and constant loads. The latter directive also comprises emission limits for railway machinery. For tractors the relevant directives are 2000/25 and 2005/13. For gasoline, Directive 2002/88 distinguishes between handheld (SH) and non handheld (NS) types of machinery.

For engine type approval, the emissions (and fuel use) are measured using various test cycles (ISO 8178). Each test cycle consists of a number of measurement points for specific engine loads during constant operation. The specific test cycle used depends of the machinery type in question, and the test cycles are described in more detail in the directives.

| Stage/Engine | CO  | VOC  | NOx  | VOC+NO <sub>X</sub> | PM    | Die       | sel machinery | /        | Tractors  |            |
|--------------|-----|------|------|---------------------|-------|-----------|---------------|----------|-----------|------------|
| size [kW]    |     |      |      |                     |       | EU        | Impleme       | nt. date | EU        | Implement. |
|              |     |      | [g/k | Wh]                 |       | directive | Transient     | Constant | directive | date       |
| Stage I      |     |      |      |                     |       |           |               |          |           |            |
| 37<=P<75     | 6.5 | 1.3  | 9.2  | -                   | 0.85  | 97/68     | 1/4 1999      | -        | 2000/25   | 1/7 2001   |
| Stage II     |     |      |      |                     |       |           |               |          |           |            |
| 130<=P<560   | 3.5 | 1    | 6    | -                   | 0.2   | 97/68     | 1/1 2002      | 1/1 2007 | 2000/25   | 1/7 2002   |
| 75<=P<130    | 5   | 1    | 6    | -                   | 0.3   |           | 1/1 2003      | 1/1 2007 |           | 1/7 2003   |
| 37<=P<75     | 5   | 1.3  | 7    | -                   | 0.4   |           | 1/1 2004      | 1/1 2007 |           | 1/1 2004   |
| 18<=P<37     | 5.5 | 1.5  | 8    | -                   | 0.8   |           | 1/1 2001      | 1/1 2007 |           | 1/1 2002   |
| Stage IIIA   |     |      |      |                     |       |           |               |          |           |            |
| 130<=P<560   | 3.5 | -    | -    | 4                   | 0.2   | 2004/26   | 1/1 2006      | 1/1 2011 | 2005/13   | 1/1 2006   |
| 75<=P<130    | 5   | -    | -    | 4                   | 0.3   |           | 1/1 2007      | 1/1 2011 |           | 1/1 2007   |
| 37<=P<75     | 5   | -    | -    | 4.7                 | 0.4   |           | 1/1 2008      | 1/1 2012 |           | 1/1 2008   |
| 19<=P<37     | 5.5 | -    | -    | 7.5                 | 0.6   |           | 1/1 2007      | 1/1 2011 |           | 1/1 2007   |
| Stage IIIB   |     |      |      |                     |       |           |               |          |           |            |
| 130<=P<560   | 3.5 | 0.19 | 2    | -                   | 0.025 | 2004/26   | 1/1 2011      | -        | 2005/13   | 1/1 2011   |
| 75<=P<130    | 5   | 0.19 | 3.3  | -                   | 0.025 |           | 1/1 2012      | -        |           | 1/1 2012   |
| 56<=P<75     | 5   | 0.19 | 3.3  | -                   | 0.025 |           | 1/1 2012      | -        |           | 1/1 2012   |
| 37<=P<56     | 5   | -    | -    | 4.7                 | 0.025 |           | 1/1 2013      | -        |           | 1/1 2013   |
| Stage IV     |     |      |      |                     |       |           |               |          |           |            |
| 130<=P<560   | 3.5 | 0.19 | 0.4  | -                   | 0.025 | 2004/26   | 1/1 2014      |          | 2005/13   | 1/1 2014   |
| 56<=P<130    | 5   | 0.19 | 0.4  | -                   | 0.025 |           | 1/10 2014     |          |           | 1/10 2014  |

Table 5.5 Overview of EU emission directives relevant for diesel fuelled non road machinery

|               | Category | Engine size                                                                                | CO      | HC      | NOx     | HC+NO <sub>X</sub> | Implementation |
|---------------|----------|--------------------------------------------------------------------------------------------|---------|---------|---------|--------------------|----------------|
|               |          | [ccm]                                                                                      | [g/kWh] | [g/kWh] | [g/kWh] | [g/kWh]            | date           |
|               | Stage I  |                                                                                            |         |         |         |                    |                |
| Hand held     | SH1      | S<20                                                                                       | 805     | 295     | 5.36    | -                  | 1/2 2005       |
|               | SH2      | 20= <s<50< td=""><td>805</td><td>241</td><td>5.36</td><td>-</td><td>1/2 2005</td></s<50<>  | 805     | 241     | 5.36    | -                  | 1/2 2005       |
|               | SH3      | 50= <s< td=""><td>603</td><td>161</td><td>5.36</td><td>-</td><td>1/2 2005</td></s<>        | 603     | 161     | 5.36    | -                  | 1/2 2005       |
| Not hand held | SN3      | 100= <s<225< td=""><td>519</td><td>-</td><td>-</td><td>16.1</td><td>1/2 2005</td></s<225<> | 519     | -       | -       | 16.1               | 1/2 2005       |
|               | SN4      | 225= <s< td=""><td>519</td><td>-</td><td>-</td><td>13.4</td><td>1/2 2005</td></s<>         | 519     | -       | -       | 13.4               | 1/2 2005       |
|               | Stage II |                                                                                            |         |         |         |                    |                |
| Hand held     | SH1      | S<20                                                                                       | 805     | -       | -       | 50                 | 1/2 2008       |
|               | SH2      | 20= <s<50< td=""><td>805</td><td>-</td><td>-</td><td>50</td><td>1/2 2008</td></s<50<>      | 805     | -       | -       | 50                 | 1/2 2008       |
|               | SH3      | 50= <s< td=""><td>603</td><td>-</td><td>-</td><td>72</td><td>1/2 2009</td></s<>            | 603     | -       | -       | 72                 | 1/2 2009       |
| Not hand held | SN1      | S<66                                                                                       | 610     | -       | -       | 50                 | 1/2 2005       |
|               | SN2      | 66= <s<100< td=""><td>610</td><td>-</td><td>-</td><td>40</td><td>1/2 2005</td></s<100<>    | 610     | -       | -       | 40                 | 1/2 2005       |
|               | SN3      | 100= <s<225< td=""><td>610</td><td>-</td><td>-</td><td>16.1</td><td>1/2 2008</td></s<225<> | 610     | -       | -       | 16.1               | 1/2 2008       |
|               | SN4      | 225= <s< td=""><td>610</td><td>-</td><td>-</td><td>12.1</td><td>1/2 2007</td></s<>         | 610     | -       | -       | 12.1               | 1/2 2007       |

 Table 5.6
 Overview of the EU emission directive 2002/88 for gasoline fuelled non road machinery

For recreational craft, Directive 2003/44 comprises the emission legislation limits for diesel and for 2-stroke and 4-stroke gasoline engines, respectively. The CO and VOC emission limits depend on engine size (kW), and the inserted parameters given in the calculation formulae in Table 5.7. For NO<sub>X</sub>, a constant limit value is given for each of the three engine types. For TSP, the constant emission limit regards diesel engines only.

Table 5.7 Overview of the EU emission directive 2003/44 for recreational craft

| Engine type       | Impl. date | CO=A+B/Pn |       |     | Н    | C=A+B/F | NO <sub>x</sub> | TSP  |     |
|-------------------|------------|-----------|-------|-----|------|---------|-----------------|------|-----|
|                   |            | А         | В     | n   | А    | В       | n               |      |     |
| 2-stroke gasoline | 1/1 2007   | 150.0     | 600.0 | 1.0 | 30.0 | 100.0   | 0.75            | 10.0 | -   |
| 4-stroke gasoline | 1/1 2006   | 150.0     | 600.0 | 1.0 | 6.0  | 50.0    | 0.75            | 15.0 | -   |
| Diesel            | 1/1 2006   | 5.0       | 0.0   | 0   | 1.5  | 2.0     | 0.5             | 9.8  | 1.0 |

#### Table 5.8 Overview of the EU emission directive 2004/26 for railway locomotives and motor cars

|             | Engine size [kW]                                                                                             |      | CO<br>[g/kWh] | HC<br>[g/kWh] | NO <sub>X</sub><br>[g/kWh] | HC+NO <sub>X</sub><br>[g/kWh] | PM<br>[g/kWh] | Implementation<br>date |
|-------------|--------------------------------------------------------------------------------------------------------------|------|---------------|---------------|----------------------------|-------------------------------|---------------|------------------------|
| Locomotives | Stage IIIA                                                                                                   |      |               |               |                            |                               |               |                        |
|             | 130<=P<560                                                                                                   | RL A | 3.5           | -             | -                          | 4                             | 0.2           | 1/1 2007               |
|             | 560 <p< td=""><td>RH A</td><td>3.5</td><td>0.5</td><td>6</td><td>-</td><td>0.2</td><td>1/1 2009</td></p<>    | RH A | 3.5           | 0.5           | 6                          | -                             | 0.2           | 1/1 2009               |
|             | 2000<=P and piston<br>displacement >= 5 l/cyl.                                                               | RH A | 3.5           | 0.4           | 7.4                        | -                             | 0.2           | 1/1 2009               |
|             | Stage IIIB                                                                                                   | RB   | 3.5           | -             | -                          | 4                             | 0.025         | 1/1 2012               |
| Motor cars  | Stage IIIA                                                                                                   |      |               |               |                            |                               |               |                        |
|             | 130 <p< td=""><td>RC A</td><td>3.5</td><td>-</td><td>-</td><td>4</td><td>0.2</td><td>1/1 2006</td></p<>      | RC A | 3.5           | -             | -                          | 4                             | 0.2           | 1/1 2006               |
|             | Stage IIIB                                                                                                   |      |               |               |                            |                               |               |                        |
|             | 130 <p< td=""><td>RC B</td><td>3.5</td><td>0.19</td><td>2</td><td>-</td><td>0.025</td><td>1/1 2012</td></p<> | RC B | 3.5           | 0.19          | 2                          | -                             | 0.025         | 1/1 2012               |

Aircraft engine emissions of NO<sub>X</sub>, CO, VOC and smoke are regulated by ICAO (International Civil Aviation Organization). The legislation is relevant for aircraft engines with rated engine thrust larger than 26.7 kN. A further description of the emission legislation and emission limits is given in ICAO Annex 16 (1993).

#### 5.2.3 Emission factors

The CO<sub>2</sub> emission factors are country specific and come from the DEA. The N<sub>2</sub>O emission factors are taken from the EMEP/CORINAIR guidebook (CORINAIR, 2003). For military machinery aggregated CH<sub>4</sub> emission factors for gasoline and diesel are derived from the road traffic emission simulations. The CH<sub>4</sub> emission factors for railways are derived from specific Danish VOC measurements from the Danish State Railways (Næraa, 2005) and a NMVOC/CH<sub>4</sub> split based on own judgment.

For agriculture, forestry, industry, household gardening and inland waterways, the VOC emission factors are derived from various European measurement programmes; see IFEU (2004) and Winther et al. (2006). The NMVOC/CH<sub>4</sub> split is taken from USEPA (2004). For national and international sea transport, and fisheries, the VOC emission factors come from the Danish TEMA2000 model. The NMVOC/CH<sub>4</sub> split comes from the EMEP/CORINAIR guidebook (CORINAIR, 2003). The latter source also provides CH<sub>4</sub> emission factors for the remaining sectors.

Emission factors are given in CollectER and CRF formats in Annex 5.2 for the years 2005-2030.

#### 5.2.4 Calculation method

#### Air traffic

For aviation the estimates are made separately for landing and take-off (LTOs < 3000 ft), and cruise (> 3000 ft). The calculations furthermore distinguish between national and international flights. For more details regarding the calculation procedure please refer to Winther (2001a, 2001b and 2006).

#### Non-road working machinery and recreational craft

The fuel use and emissions are calculated as the product of the number of engines, annual working hours, average rated engine size, load factor, and fuel use/emission factors. For diesel and gasoline engines, the deterioration effects (due to engine ageing) are included in the emission calculation equation by using deterioration factors according to engine type, size, age, lifetime and emission level. For diesel engines before Stage IIIB and IV, transient operational effects are also considered by using average transient factors. For more details regarding the calculation procedure, please refer to Winther (2006),

#### Other sectors

For Danish ferries the fuel use and emissions are calculated as the product of the number of round trips, sailing time per round trip, engine size, load factor, and fuel use/emission factors. Please refer to Winther (2007) for more details regarding this calculation procedure. For other national sea traffic, fishing vessels, military and railways, the emissions are estimated with the simple method using fuel-related emission factors and fuel use from the DEA.

# 5.3 Fuel use and emission results

An overview of the fuel use and emission results is given in Table 5.8 for all mobile sources in Denmark. The '2010' and '2015' results are the average figures for the years 2008-2012 and 2013-2017, respectively.

| Energy         Industry - Other (1A2f)         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         13         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14 <t< th=""><th>Enoray</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_000</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Enoray           |                              |      |       |       |       |       |       |       | _000  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------|------|-------|-------|-------|-------|-------|-------|-------|
| Civil Aviation (1A3a)         3         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | neigy            | Industry - Other (1A2f)      | 12   | 12    | 12    | 12    | 12    | 12    | 12    | 12    |
| Road (1A3b)       126       152       168       174       179       186       191       1         Railways (1A3c)       4       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3 </td <td></td> <td>Civil Aviation (1A3a)</td> <td>3</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Civil Aviation (1A3a)        | 3    | 2     | 2     | 2     | 2     | 2     | 2     | 2     |
| Railways (1A3c)       4       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Road (1A3b)                  | 126  | 152   | 168   | 174   | 179   | 186   | 191   | 195   |
| Navigation (1A3d)         7         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         7         7         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         7         7         6         6         6         6         6         7         7         6         6         6         6         6         6         7         7         6         6         6         6         6         7         7         7         6         6         6         6         7         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | Railways (1A3c)              | 4    | 3     | 3     | 3     | 3     | 3     | 3     | 3     |
| Residential (1A4b)       2       2       4       4       4       4       4         Ag./for./fish. (1A4c)       28       23       22       21       21       21       21         Military (1A5)       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 <td< td=""><td></td><td>Navigation (1A3d)</td><td>7</td><td>6</td><td>6</td><td>6</td><td>6</td><td>6</td><td>6</td><td>6</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | Navigation (1A3d)            | 7    | 6     | 6     | 6     | 6     | 6     | 6     | 6     |
| Ag./for./fish. (1A4c)       28       23       22       21       21       21       21       21         Military (1A5)       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | Residential (1A4b)           | 2    | 2     | 4     | 4     | 4     | 4     | 4     | 4     |
| Military (1A5)         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <th2< th="">         2         2         &lt;</th2<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Ag./for./fish. (1A4c)        | 28   | 23    | 22    | 21    | 21    | 21    | 21    | 21    |
| Navigation int. (1A3d)         40         56         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         413         413         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | Military (1A5)               | 2    | 2     | 2     | 2     | 2     | 2     | 2     | 2     |
| Civil Aviation int. (1A3a)         24         33         31         32         34         37         40           CO2         Industry - Other (1A2f)         842         879         912         905         901         883         875         8           Civil Aviation (1A3a)         243         154         128         133         141         152         162         1           Road (1A3b)         9241         11159         12338         12764         13150         13685         14023         143           Railways (1A3c)         297         228         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | Navigation int. (1A3d)       | 40   | 56    | 41    | 41    | 41    | 41    | 41    | 41    |
| CO2         Industry - Other (1A2f)         842         879         912         905         901         883         875         8           Civil Aviation (1A3a)         243         154         128         133         141         152         162         1           Road (1A3b)         9241         11159         12338         12764         13150         13685         14023         143           Railways (1A3c)         297         228         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         202         203         143         418         44         44         44         44         44         44         44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Civil Aviation int. (1A3a)   | 24   | 33    | 31    | 32    | 34    | 37    | 40    | 42    |
| Civil Aviation (1A3a)       243       154       128       133       141       152       162       1         Road (1A3b)       9241       11159       12338       12764       13150       13685       14023       143         Railways (1A3c)       297       228       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>CO</u> 2      | Industry - Other (1A2f)      | 842  | 879   | 912   | 905   | 901   | 883   | 875   | 872   |
| Road (1A3b)       9241       11159       12338       12764       13150       13685       14023       143         Railways (1A3c)       297       228       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       203       205 <td>_</td> <td>Civil Aviation (1A3a)</td> <td>243</td> <td>154</td> <td>128</td> <td>133</td> <td>141</td> <td>152</td> <td>162</td> <td>172</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                | Civil Aviation (1A3a)        | 243  | 154   | 128   | 133   | 141   | 152   | 162   | 172   |
| Railways (1A3c)       297       228       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       202       203       203       203       203       203       203       203       203       203       203       203       203       203       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | Road (1A3b)                  | 9241 | 11159 | 12338 | 12764 | 13150 | 13685 | 14023 | 14327 |
| Navigation (1A3d)         555         463         469         428         418         418         418         4           Residential (1A4b)         138         169         297         290         287         287         287         2           Ag./for./fish. (1A4c)         2079         1684         1619         1586         1543         1528         1533         15           Military (1A5)         119         111         122         122         122         122         1           Navination int (1A3d)         3087         4279         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | Railways (1A3c)              | 297  | 228   | 202   | 202   | 202   | 202   | 202   | 202   |
| Residential (1A4b)         138         169         297         290         287         287         2           Ag./for./fish. (1A4c)         2079         1684         1619         1586         1543         1528         1533         15           Military (1A5)         119         111         122         122         122         122         1           Navination int (1A3d)         3087         4279         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | Navigation (1A3d)            | 555  | 463   | 469   | 428   | 418   | 418   | 418   | 418   |
| Ag./for./fish. (1A4c)       2079       1684       1619       1586       1543       1528       1533       15         Military (1A5)       119       111       122       122       122       122       122       122       1         Navigation int (1A3d)       3087       4279       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138       3138 </td <td></td> <td>Residential (1A4b)</td> <td>138</td> <td>169</td> <td>297</td> <td>290</td> <td>287</td> <td>287</td> <td>287</td> <td>287</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Residential (1A4b)           | 138  | 169   | 297   | 290   | 287   | 287   | 287   | 287   |
| Military (1A5)         119         111         122         122         122         122         122         122         122         122         122         122         122         122         122         122         122         123         138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138         3138 <td></td> <td>Ag./for./fish. (1A4c)</td> <td>2079</td> <td>1684</td> <td>1619</td> <td>1586</td> <td>1543</td> <td>1528</td> <td>1533</td> <td>1524</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | Ag./for./fish. (1A4c)        | 2079 | 1684  | 1619  | 1586  | 1543  | 1528  | 1533  | 1524  |
| Navigation int (143d) 3087 4279 3138 3138 3138 3138 3138 3138 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | Military (1A5)               | 119  | 111   | 122   | 122   | 122   | 122   | 122   | 122   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Navigation int. (1A3d)       | 3087 | 4279  | 3138  | 3138  | 3138  | 3138  | 3138  | 3138  |
| Civil Aviation int. (1A3a) 1736 2350 2254 2335 2457 2672 2849 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | Civil Aviation int. (1A3a)   | 1736 | 2350  | 2254  | 2335  | 2457  | 2672  | 2849  | 3038  |
| CH <sub>4</sub> Industry - Other (1A2f) 60 50 44 37 33 30 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CH₄              | Industry - Other (1A2f)      | 60   | 50    | 44    | 37    | 33    | 30    | 29    | 29    |
| Civil Aviation (1A3a) 7 5 4 4 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u></u>          | Civil Aviation (1A3a)        | 7    | 5     | 4     | 4     | 5     | 5     | 5     | 6     |
| Road (1A3b) 2456 3244 2952 2192 1490 1104 977 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Road (1A3b)                  | 2456 | 3244  | 2952  | 2192  | 1490  | 1104  | 977   | 939   |
| Railways (1A3c) 12 10 8 3 2 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Railwavs (1A3c)              | 12   | 10    | 8     | 3     | 2     | 0     | 0     | 0     |
| Navigation (1A3d) 34 33 33 32 31 31 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | Navigation (1A3d)            | 34   | 33    | 33    | 32    | 31    | 31    | 31    | 31    |
| Residential (1A4b) 182 177 291 279 261 258 258 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | Residential (1A4b)           | 182  | 177   | 291   | 279   | 261   | 258   | 258   | 258   |
| Ag./for./fish. (1A4c) 144 90 76 65 60 57 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | Ag./for./fish. (1A4c)        | 144  | 90    | 76    | 65    | 60    | 57    | 56    | 55    |
| Military (1A5) 5 5 5 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | Military (1A5)               | 5    | 5     | 5     | 5     | 4     | 4     | 4     | 4     |
| Navigation int. (1A3d) 70 97 74 76 79 81 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | Navigation int. (1A3d)       | 70   | 97    | 74    | 76    | 79    | 81    | 82    | 83    |
| Civil Aviation int. $(1A3a)$ 31 42 43 44 47 51 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | Civil Aviation int. (1A3a)   | 31   | 42    | 43    | 44    | 47    | 51    | 54    | 58    |
| N <sub>2</sub> O Industry - Other (1A2f) 34 37 39 38 38 38 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N <sub>2</sub> O | Industry - Other (1A2f)      | 34   | 37    | 39    | 38    | 38    | 38    | 38    | 38    |
| $\frac{1}{10} = \frac{1}{10} $ | <u></u>          | Civil Aviation (1A3a)        | 10   | 8     | 8     | 9     | 9     | 10    | 10    | 11    |
| Boad (1A3b) 402 1172 1471 1643 1739 1843 1927 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | Boad (1A3b)                  | 402  | 1172  | 1471  | 1643  | 1739  | 1843  | 1927  | 1984  |
| Bailways (1A3c) 8 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Bailways (1A3c)              | 8    | 6     | 6     | 6     | 6     | 6     | 6     | 6     |
| Navigation (1A3d) 32 26 26 24 24 24 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | Navigation (1A3d)            | 32   | 26    | 26    | 24    | 24    | 24    | 24    | 24    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | Residential (1A4b)           | 2    |       |       | 5     | 5     | 5     | 5     | 5     |
| $A_{\alpha}/for/fish_{\alpha}(1A4c) = 98 83 80 79 78 78 78 78$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | Ag./for./fish. (1A4c)        | - 98 | 83    | 80    | 79    | 78    | 78    | 78    | 77    |
| Military (1A5) 4 4 7 8 8 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | Military (1A5)               | 4    | 4     | 7     | 8     | 8     | . 0   | . 0   |       |
| Navigation int. (1A3d) 194 270 198 198 198 198 198 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | Navigation int. (1A3d)       | 194  | 270   | 198   | 198   | 198   | 198   | 198   | 198   |
| Civil Aviation int. (1A3a) 59 82 78 81 85 93 99 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | Civil Aviation int. (1A3a)   | 59   | 82    | 78    | 81    | 85    | 93    | 99    | 105   |
| GHG-eq Industry - Other (1A2f) 853 892 925 917 914 895 887 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GHG-ea           | Industry - Other (1A2f)      | 853  | 892   | 925   | 917   | 914   | 895   | 887   | 884   |
| Civil Aviation (1A3a) 246 157 130 136 144 155 165 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>uno oq.</u>   | Civil Aviation (1A3a)        | 246  | 157   | 130   | 136   | 144   | 155   | 165   | 176   |
| Boad (1A3b) 9418 11591 12856 13320 13721 14279 14641 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | Boad (1A3b)                  | 9418 | 11591 | 12856 | 13320 | 13721 | 14279 | 14641 | 14961 |
| Bailways (1A3c) 300 230 204 204 204 204 204 204 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | Bailways (1A3c)              | 300  | 230   | 204   | 204   | 204   | 204   | 204   | 204   |
| Navigation $(143d)$ 566 472 477 437 426 426 426 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | Navigation (1A3d)            | 566  | 472   | 477   | 437   | 426   | 426   | 426   | 426   |
| Residential (1A/b) 1/2 17/ 305 208 20/ 20/ 20/ 20/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | Residential (1A/b)           | 1/2  | 174   | 305   | 208   | 20/   | 20/   | 20/   | 20/   |
| An /for /fish (1A4c) 2112 1711 1645 1612 1569 1559 1558 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | Ag /for /fish $(1\Delta 4c)$ | 2112 | 1711  | 1645  | 1612  | 1560  | 1553  | 1558  | 1540  |
| Military (1A5) 120 120 124 124 125 125 125 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | Military (1A5)               | 120  | 112   | 124   | 124   | 125   | 125   | 125   | 125   |
| Navigation int (143d) 3149 4365 3201 3201 3201 3201 3201 3201 3201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | Navigation int (143d)        | 3140 | 4365  | 3201  | 3201  | 3201  | 3201  | 3201  | 3201  |
| Civil Aviation int. (1A3a) 1755 2376 2279 2361 2485 2701 2881 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | Civil Aviation int. (1A3a)   | 1755 | 2376  | 2279  | 2361  | 2485  | 2701  | 2881  | 3072  |

 Table 5.9
 Summary table of fuel use and emissions for mobile sources in Denmark

#### 5.3.1 Road transport



Figure 5.3 Fuel use, CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O emissions from 2005-2030 for road traffic

The total fuel use for road traffic increases by 17% from 2005 to 2030. Passenger cars have the largest fuel use share, followed by heavy duty vehicles, light duty vehicles, buses and 2-wheelers in decreasing order. Heavy duty vehicles and buses have similar fuel use totals, and the fuel use levels are considerably higher than noted for buses and 2-wheelers in particular. The  $CO_2$  emissions directly depend of the fuel use and hence the  $CO_2$  emission trends follow the development in fuel use.

The majority of the CH<sub>4</sub> and N<sub>2</sub>O emissions from road transport come from gasoline passenger cars (Figure 5.3). The CH<sub>4</sub> emission decrease of 68% from 2005 to 2030 is explained by the introduction of gradually more efficient catalytic converters for gasoline cars. The use of catalysts is also the main reason for the total N<sub>2</sub>O emission increase of 36% during the same time period. The N<sub>2</sub>O emission trend becomes very similar to the fuel use development when the phase out rate of conventional gasoline cars becomes zero.

#### 5.3.2 Other mobile sources



Figure 5.4 Fuel use, CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O emissions from 2005-2030 for other mobile sources

For other mobile sources the fuel use and emissions for Agriculture/forestry/fisheries (1A4c) decrease in the first part of the forecast period. The emission reduction is due to a shift towards a smaller number of agricultural tractors and harvesters, with larger engines. For air traffic, the DEA energy projections assumes a similar growth rate for domestic and international flights corresponding to a fuel use increase of 35% from 2005 to 2030. The marginal fuel use decreases for Industry (1A2f), Residential (1A4b) and Navigation (1A3d) is due to a gradual phase out of older and less fuel efficient technology.

Agriculture/forestry/fisheries (1A4c) is the most important source of  $N_2O$  emissions, followed by Industry (1A2f) and Navigation (1A3d). The emission reduction for the latter sector is due to the gradual shift from 2-stroke to 4-stroke gasoline engines in recreational craft (also visible for CH<sub>4</sub>). The emission contributions from Railways (1A3c), Domestic aviation (1A3a) and Military (1A5) are small compared to the overall  $N_2O$  total for other mobile sources.

By far the majority of the CH<sub>4</sub> emission comes from gasoline gardening machinery (Residential, 1A4b), whereas for the railway, domestic air traffic and military categories only small emission contributions are noted. The CH<sub>4</sub> emission reduction for the residential category is due to the introduction of the cleaner gasoline stage II emission technology. Also for Agriculture/forestry-/fisheries (1A4c) and Industry (1A2f), the gradually stricter emission standards for diesel engines cause the CH<sub>4</sub> emissions to decrease over the forecast period.

# 5.4 Model structure for NERI transport models

More detailed emission models for transport comprising road transport, air traffic, non road machinery and sea transport have been developed by NERI. The emission models are organised in databases. The basis is input data tables for fleet and operational data as well as fuel sale figures, and output fuel use and emission results are obtained through linked database queries. A thorough documentation of the database input data side, and data manipulation queries will be given in a NERI report in 2007, along with flow-chart diagrams.

# References

Danish Energy Authority, 2005: The Danish energy statistics, Available on the Internet at <u>http://www.ens.dk/graphics/Publikationer/Statis-</u> <u>tik/stat\_02/02\_Indholdsfortegnelse.htm</u> (06-07-2004)

Ekman, B. 2005a: Historical traffic data. Unpublished data material from the Danish Road Directorate.

Ekman, B. 2005b: Traffic data forecasts. Unpublished data material from the Danish Road Directorate.

EMEP/CORINAIR, 2003: EMEP/CORINAIR Emission Inventory Guidebook 3rd Edition September 2003 Update, Technical Report no 20, European Environmental Agency, Copenhagen. <u>http://reports.eea.e-</u> <u>u.int/EMEPCORINAIR4/en</u>.

ICAO Annex 16: 'International standards and recommended practices', Volume II 'Aircraft Engine Emissions', 2nd ed. (1993), plus amendments: Amendment 3 March 20 1997 and amendment 4 November 4 1999.

IFEU 2004: Entwicklung eines Modells zur Berechnung der Luftschadstoffemissionen und des Kraftstoffverbrauchs von Verbrennungsmotoren in mobilen Geräten und Maschinen - Endbericht, UFOPLAN Nr. 299 45 113, pp. 122, Heidelberg.

Illerup, J.B., Birr-Pedersen, K., Mikkelsen, M.H., Winther, M., Gyldenkærne, S., Bruun, H.G. & Fenhann, J. 2002: Projection Models 2010. Danish emissions of SO<sub>2</sub>, NO<sub>X</sub>, NMVOC and NH<sub>3</sub>. National Environmental Research Institute, Denmark. 192 pg - NERI Technical Report No. 414.

Markamp 2005: Personal communication, Henrik Markamp, The National Motorcycle Association.

Ntziachristos, L. & Samaras, Z. 2000: COPERT III Computer Programme to Calculate Emissions from Road Transport - Methodology and Emission Factors (Version 2.1). Technical report No 49. European Environment Agency, November 2000, Copenhagen. Available at: <u>http://reports.eea.eu.int/Technical\_report\_No\_49/en</u> (June 13, 2003).

Næraa, R. 2005: Unpublished data material from the Danish State Railways. Nørgaard, T., Hansen, K.F. 2004: Chiptuning af køretøjer - miljømæssig effekt, Miljøprojekt nr. 888, Miljøstyrelsen.

USEPA 2004: Conversion Factors for Hydrocarbon Emission Components. EPA420-P-04-001, US Environmental Protection Agency, 5 pp.

Winther, M. 2001a: 1998 Fuel Use and Emissions for Danish IFR Flights. Environmental Project no. 628, 2001. 112 p. Danish EPA. Prepared by the National Environmental Research Institute, Denmark. Available at <a href="http://www.mst.dk/udgiv/Publications/2001/87-7944-661-2/html/">http://www.mst.dk/udgiv/Publications/2001/87-7944-661-2/html/</a>.

Winther, M. 2001b: Improving fuel statistics for Danish aviation. National Environmental Research Institute, Denmark. 56 p. – NERI Technical Report No. 387.

Winther, M. 2006: Danish emission inventories for road transport and other mobile sources. Inventories until year 2004. National Environmental Research Institute. - Research Notes from NERI XXX: (in press)

Winther, M., Nielsen O. 2006: Fuel use and emissions from non road machinery in Denmark from 1985-2004 - and projections from 2005-2030. Environmental Project 1092. The Danish Environmental Protection Agency. 238 pp. Available at: <u>http://www.mst.dk/udgiv/Publica-tions/2006/87-7052-085-2/pdf/87-7052-086-0.pdf</u>

Winther, M. 2007: Fuel use and emissions from sea transport in Denmark from 1990-2005 - and projections from 2006-2030. National Environmental Research Institute. - Research Notes from NERI XXX. (in press).

# 6 Fluorinated gases (F-gases)

These gases comprise HFCs, PFCs and SF<sub>6</sub>. They all contain fluorine, hence the name F-gases, which is the international name.

None of the F-gases are produced in Denmark. The emission of these gases is, therefore, associated with their use alone.

An account of the annual consumption and emission of F-gases is prepared by a consultant on behalf of the Danish Environmental Protection Agency. In this connection, projections to 2020 are also prepared. Annual reports are available which contain both consumption and emission data.

F-gases are powerful greenhouse gases with GWP between 140 and 23,900. F-gases, therefore, receive a great deal of attention in connection with greenhouse gas emission inventories. For many F-gas applications, the gases can be controlled and/or replaced, which has been, and continues to be, the case in Denmark. Data for the projections mentioned here take this into consideration, but the projections do not take the potential influence of new EU regulation in this field into consideration. According to the regulations proposed by the EU Commission, they will only have a lowering effect on emissions from mobile air conditioning equipment, while for the remaining application areas the regulations will lead to increased emissions. In the emission inventories for 2004, the total contribution from F-gases, converted into  $CO_2$  equivalents, constituted 0.9% of the Danish total without  $CO_2$  from LUCF.

HFCs comprise a range of substances, of which the following, relevant for Denmark, are approved for inventory under the Climate Convention and Kyoto Protocol (KP), with stated and approved GWP values:

| Substance:              | GWP  |
|-------------------------|------|
| CO <sub>2</sub> -equiv. |      |
| HFC-32                  | 650  |
| HFC-125                 | 2800 |
| HFC-134a                | 1300 |
| HFC-143a                | 3800 |
| HFC-152a                | 140  |
| HFC-227ea               | 2900 |

However, HFCs are estimated in Denmark in accordance with the trade names for HFC mixtures which are put together from the 'pure' HFCs listed in Table 6.1.

| Table 6.1 | Relationship (percentage weight) between HFCs, as calculated for the Cli- |
|-----------|---------------------------------------------------------------------------|
| mate Conv | vention ('pure' HFCs) and the HFC mixtures used under trade names in Den- |
| mark      |                                                                           |
|           |                                                                           |

| Pure HFCs    | HFC-32 | HFC-125 | HFC-134a | HFC-143a | HFC-152a | HFC-227ea |
|--------------|--------|---------|----------|----------|----------|-----------|
| HFC mixtures |        |         |          |          |          |           |
| HFC-365      |        |         |          |          |          | 8%        |
| HFC-401a     |        |         |          |          | 13%      |           |
| HFC-402a     |        | 60%     |          |          |          |           |
| HFC-404a     |        | 44%     | 4%       | 52%      |          |           |
| HFC-407a     | 23%    | 25%     | 52%      |          |          |           |
| HFC-410a     | 50%    | 50%     |          |          |          |           |
| HFC-507a     |        | 50%     |          | 50%      |          |           |

HFCs are in most widespread use as refrigerants in stationary and mobile air-conditioning and refrigeration systems. A more minor application is in insulation foams and foams of other types.

With regard to PFCs, only  $C_3F_8$  is considered to be relevant for Denmark and approved for inventory under the Climate Convention and KP, with a GWP of 7 000. The use of  $C_3F_8$ , mostly as a refrigerant, is limited.

 $SF_6$  is used in Denmark and is estimated under the Climate Convention and KP, with a GWP value of 23 900. It is primarily used in high voltage equipment, in double-glazing and, to a lesser degree, in laboratories, for shoe soles and a limited number of other minor applications.

# 6.1 Emissions model

Emissions are calculated with a model for the individual substance's life-cycle over the years, taking the emissions associated with the actual processes into consideration. For refrigeration and high voltage equipment, the processes are filling up/topping up, operation and destruction. For foam, the processes are production of the products in which the substances are used as well as use and destruction of the product. The model has been developed and used in connection with the annual historic emission inventories for the Climate Convention, see NIR 2006. As a result, the model corresponds with the guidelines produced for this purpose. The model is built in Microsoft Excel, combining an Excel spreadsheet file for each year. For details of the model and the calculation methodologies, please also refer to the Danish Environmental Protection Agency's annual reports produced as a basis for the F-gas inventories.

# 6.2 Emissions of the F-gases HFCs, PFCs and SF $_6$ 1993-2020 (2030)

Data is available for historic values for F-gas emissions for the period 1993-2004, as well as projected values for the period 2005-2020 as calculated for the Danish Environmental Protection Agency. As mentioned, the calculations are based on the trade names for HFC mixtures, and the inventories and projections are at this level of detail. The total F-gas emission in  $CO_2$  equivalents agrees almost entirely with the historic values reported to the EU and the Climate Convention, where the mixtures

are converted to pure HFCs. Where agreement is not total, this is due to the lack of complete correspondence between the GWP values for mixtures and for the pure HFCs, as well as the minor rounding which takes place in the databases and formats (CRF) used for the reporting. These differences are not of any significant importance.

The reference for the data in the tables below is, therefore, the 2006 report prepared for the Danish Environmental Protection Agency (DEPA) (Danish Environmental Protection Agency, 2006). Moreover, these data have been based on detailed spreadsheets, prepared in connection with the consultant's work on the F-gas inventories for DEPA.

Furthermore, the report and the data collected in this connection indicate that, with regard to projection of the emissions, the data are based on 'steady state' consumption, with 2004 as the reference year. Also, cut-off dates in relation to the phasing out of individual substances, in connection with Danish regulation concerning the phasing out of powerful greenhouse gases, are taken into account. HFCs used in foaming agents in flexible foam plastic were phased out from of January 1, 2006. Furthermore, a tax effect has been introduced for relevant applications and, as far as possible, expected increases in the use of these substances will be taken into consideration in a number of application areas – as will reductions expected. Projection of the use of HFC-404A is based on a balancing exercise, as the development of the used of HCFC-22 refrigeration systems can, on the one hand, be expected to lead to higher than predicted increases in consumption of HFC-404A in commercial refrigeration plant, as HFC-404A together with CO<sub>2</sub> systems are the most obvious potential substitutes. On the other hand, from January 1, 2000, building new HCFC-22-based systems has not been permitted and, from January 1, 2002, substitution with HCFC-22 in existing systems has been banned. For SF<sub>6</sub>, use in connection with double-glazing was banned in 2002, but throughout the period there will be emission of SF<sub>6</sub> in connection with the disposal of double-glazing panes where SF<sub>6</sub> has been used.

The available historic and projected data are presented first at the CRF category level equivalent to the Summary 2 table in the CRF reporting format, Table 6.2. This level is equivalent to the sum of the emissions for all HFCs, PFCs and SF<sub>6</sub>, respectively. Small deviations between the data in Table 6.2 and that reported for 1993-2004 have been explained above (the latest reported data are <u>http://cdr.eionet.europa.eu/dk-/Air\_Emission\_Inventories/Submission\_UNFCCC/colrdy8sq</u>). It should be noted that the basic data for the years before 1995 is not entirely adequate with regard to coverage, in relation to actual emissions. Under the Kyoto Protocol, it is possible to choose 1995 as base year for F-gases. Due to the lack of coverage prior to 1995, this option will be used in Denmark. Therefore, the projection on the '5-year level' for F-gases summarised in Table 6.3 starts from 1995. For the projection after 2020, the total projected emission for 2020 is retained.

|      | Sum   |      |                 | Total   |
|------|-------|------|-----------------|---------|
|      | HFCs  | PFCs | SF <sub>6</sub> | F-gases |
| 1993 | 93.9  | 0.0  | 101.2           | 195.1   |
| 1994 | 134.5 | 0.1  | 122.1           | 256.6   |
| 1995 | 217.7 | 0.5  | 107.3           | 325.6   |
| 1996 | 329.3 | 1.7  | 61.0            | 391.9   |
| 1997 | 323.7 | 4.1  | 73.1            | 400.9   |
| 1998 | 411.0 | 9.1  | 59.4            | 479.5   |
| 1999 | 502.6 | 12.5 | 65.4            | 580.5   |
| 2000 | 604.1 | 17.9 | 59.2            | 681.2   |
| 2001 | 646.4 | 22.1 | 30.4            | 698.9   |
| 2002 | 671.2 | 22.2 | 25.5            | 718.8   |
| 2003 | 694.4 | 19.3 | 31.9            | 745.6   |
| 2004 | 747.8 | 15.9 | 33.1            | 796.8   |
| 2005 | 815.3 | 13.9 | 34.7            | 863.9   |
| 2006 | 837.4 | 12.2 | 35.8            | 885.4   |
| 2007 | 889.1 | 10.8 | 36.0            | 935.8   |
| 2008 | 891.7 | 10.1 | 36.2            | 937.9   |
| 2009 | 873.3 | 9.6  | 36.4            | 919.2   |
| 2010 | 852.9 | 9.2  | 36.6            | 898.7   |
| 2011 | 804.0 | 8.9  | 68.9            | 881.8   |
| 2012 | 740.1 | 8.6  | 115.0           | 863.7   |
| 2013 | 693.7 | 8.2  | 125.0           | 826.9   |
| 2014 | 610.8 | 7.8  | 137.5           | 756.0   |
| 2015 | 535.1 | 7.3  | 122.8           | 665.2   |
| 2016 | 451.4 | 6.8  | 95.1            | 553.3   |
| 2017 | 388.3 | 6.5  | 80.2            | 475.0   |
| 2018 | 302.3 | 6.1  | 110.2           | 418.6   |
| 2019 | 255.1 | 5.8  | 79.4            | 340.4   |
| 2020 | 170.6 | 5.6  | 58.9            | 235.2   |

Table 6.2Total F-gas emissions in CO2-equiv. (1 000 tonnes). Historic data: 1993-2004. Projections: 2005-2020.

 Table 6.3
 Total emission of F-gases in CO<sub>2</sub>-equiv. (1 000 tonnes). Historic data: 1993-2004. Projections: 2005-2020.

 After 2020, the emission value for 2020 is retained.

| CRF-sector              | Year                | 1995  | 2000  | 2005  | 2010  | 2015  | 2020  | 2025  | 2030  |
|-------------------------|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                         | Note                | (1)   |       |       | (2)   | (3)   |       |       |       |
| 2. Industrial processes |                     |       |       |       |       |       |       |       |       |
| F. Consumption of halo  | ocarbons and $SF_6$ | 325.6 | 681.2 | 863.9 | 900.3 | 655.3 | 235.2 | 235.2 | 235.2 |

Note

(1) Relevant data is not available for 1990; 1995 can be selected in the KP for F-gases as the base year

(2) 5-year average: 2008-2012

(3) 5-year average: 2013-2017

In Figure 6.1, the data from Table 6.2 are illustrated. The apparent increase within historic data for the total F-gas emission runs from 1995 (1993) to the most recent historic inventory for 2003. In 2001, legislation began to be adopted to control F-gases in Denmark. The legislation involves, from 2001, a tax on use of F-gases; while in 2002 bans were introduced, of which the majority first come into force in 2006 and 2007. In the projections, the regulation in this area translates into decreasing emissions after 2007. The figure shows that F-gas emissions are domi-

nated by HFCs, whereas PFCs comprise only a very small share.  $SF_6$ , at the beginning of the historic inventory period, comprises a considerable share, falling thereafter due to the gradual phasing out of the use of  $SF_6$  in metal works. The projection for  $SF_6$  shows a rise and then a fall towards the end of the period; this path reflects the expected emission from the destruction of double-glazing in which  $SF_6$  is used.



Figure 6.1 Time-series for F-gas emissions, divided into HFCs, PFCs and SF<sub>6</sub>

#### 6.3 Emissions of 'pure' HFCs

On the background of the relationship presented in Table 6.1 between HFCs as trade names, as presented in the inventories, and the 'pure' HFCs, reported to the Climate Convention, etc, data is calculated for the 'pure' HFCs, see Table 6.4. In comparison of the HFC total in Table 6.4 with the equivalent in Table 6.2, minor differences are apparent, for reasons as described above. Data from Table 6.4 is, moreover, illustrated in Figure 6.2, except for HFC-32 and HFC-152a, these displaying a relatively low and diminishing share. The largest contribution is from HFC-134a, followed by HFC-143a and HFC-125.

Emissions from use of HFCs as refrigerants dominate (Figure 6.3) in relation to use in foams (Figure 4). Stationary refrigeration equipment, e.g. in supermarkets, constitutes the most common refrigerant application, see Figure 6.3. Otherwise, use is in refrigerators and air conditioning equipment.

The emission from foams is expected to decline over the years as a result of the ban which comes into force in 2006.

Table 6.4Emissions of 'pure' HFC gases in CO2-equiv. (1 000 tonnes). Inventories: 1993-2004. Projections: 2005-2020.

|      | HFC-32 | HFC-125 | HFC-134a | HFC-143a | HFC-152a | HFC-total |
|------|--------|---------|----------|----------|----------|-----------|
| 1993 | 0.0    | 0.0     | 89.7     | 0.0      | 4.2      | 93.9      |
| 1994 | 0.0    | 0.6     | 126.6    | 0.8      | 6.4      | 134.5     |
| 1995 | 0.1    | 7.2     | 195.1    | 9.2      | 6.1      | 217.7     |
| 1996 | 0.5    | 26.5    | 264.9    | 32.9     | 4.5      | 329.3     |
| 1997 | 1.2    | 44.2    | 224.1    | 52.2     | 2.1      | 323.8     |
| 1998 | 1.8    | 61.1    | 273.8    | 73.2     | 1.4      | 411.2     |
| 1999 | 2.5    | 88.8    | 295.7    | 110.7    | 5.3      | 503.0     |
| 2000 | 3.7    | 120.6   | 327.3    | 150.7    | 2.3      | 604.6     |
| 2001 | 7.2    | 136.6   | 349.4    | 152.3    | 1.9      | 647.3     |
| 2002 | 5.5    | 135.8   | 364.8    | 164.2    | 1.8      | 672.1     |
| 2003 | 6.6    | 153.7   | 348.8    | 186.2    | 0.3      | 695.5     |
| 2004 | 7.8    | 167.7   | 371.9    | 200.7    | 0.9      | 749.0     |
| 2005 | 9.0    | 191.8   | 383.3    | 231.7    | 0.8      | 816.6     |
| 2006 | 10.1   | 213.6   | 355.3    | 259.6    | 0.2      | 838.7     |
| 2007 | 10.9   | 230.6   | 367.3    | 281.6    | 0.1      | 890.5     |
| 2008 | 10.9   | 231.3   | 367.6    | 283.2    | 0.1      | 893.1     |
| 2009 | 10.7   | 228.7   | 354.7    | 280.4    | 0.1      | 874.7     |
| 2010 | 10.6   | 225.2   | 342.7    | 275.7    | 0.1      | 854.3     |
| 2011 | 10.1   | 208.7   | 333.3    | 253.2    | 0.1      | 805.4     |
| 2012 | 9.4    | 194.3   | 302.6    | 235.1    | 0.1      | 741.5     |
| 2013 | 8.7    | 180.4   | 287.6    | 218.2    | 0.1      | 694.9     |
| 2014 | 8.1    | 163.7   | 243.3    | 196.6    | 0.1      | 611.8     |
| 2015 | 6.7    | 140.3   | 219.1    | 169.7    | 0.1      | 535.9     |
| 2016 | 5.5    | 116.1   | 189.7    | 140.4    | 0.1      | 451.8     |
| 2017 | 4.3    | 97.5    | 167.1    | 119.7    | 0.1      | 388.7     |
| 2018 | 2.9    | 69.2    | 144.1    | 86.2     | 0.1      | 302.5     |
| 2019 | 1.4    | 50.9    | 134.2    | 68.6     | 0.1      | 255.2     |
| 2020 | 0.0    | 21.8    | 116.2    | 32.6     | 0.1      | 170.6     |

HFC time series



Figure 6.2 Time-series for the emission of 'pure' HFCs



HFC used as refrigerant

Figure 6.3 Time-series for the emission of 'pure' HFCs used as refrigerants

HFC use in foam



Figure 6.4 Time-series for the emission of 'pure' HFCs used in foams

# References

Danish Environmental Protection Agency (2004). Ozone depleting substances and the greenhouse gases HFCs, PFCs and SF<sub>6</sub>. Danish consumption and emissions 2002. Environmental Project No. 890.<u>http://-</u> <u>www.mst.dk/udgiv/Publications/2004/87-7614-123-3/pdf/87-7614-</u> <u>124-1.PDF</u>

Danish Environmental Protection Agency (2005). Ozone depleting substances and the greenhouse gases HFCs, PFCs and SF<sub>6</sub>. Danish consumption and emissions 2003. Environmental Project No. 890.<u>http://-</u> <u>www.mst.dk/udgiv/publications/2005/87-7614-601-4/pdf/87-7614-602-2.pdf</u>

Danish Environmental Protection Agency (2006). Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF<sub>6</sub>. Danish consumption and emissions 2004. Environmental Project No. 890. <u>http://-</u> <u>www.mst.dk/udgiv/publications/2006/87-7614-990-0/pdf/87-7614-</u> <u>991-9.pdf</u>

# 7 Agriculture

The emission of greenhouse gases from the agricultural sector includes the emission of methane and nitrous oxide. The emission of carbon dioxide is not included in the projection. The  $CO_2$  emission is not included in Danish reporting under agriculture, but under forestry and land-use change (LULUCF – Land Use, Land Use Change and Forestry). The projection comprises an assessment of the greenhouse gas emissions from the agricultural sector to 2030 – the emissions during 2025-2030 are, however, retained at the same level.

# 7.1 Projection of agricultural greenhouse gas emissions

Assessment of future greenhouse gas emissions from the agricultural sector is regularly updated in line with actual developments and new scientific knowledge in the area. Therefore, some deviations are apparent in comparison with the projection scenarios published in previous reports. The projections in this publication replace the latest basic projection for greenhouse gases 1990-2017 published in 2004 (Gyldenkærne & Mikkelsen, 2004).

The assumptions which form the base for the updated projections are in many ways the same as those used in earlier projections (Gyldenkærne & Mikkelsen 2004) – however, the emission in the period 1990–2004 has been updated in accordance with the latest official reporting from Denmark. In addition to the ammonia action plan, improvements in feed efficiency, expectations with regard to the increased injection of slurry and the effects of implementation of the Plan for the Aquatic Environment III (VMPIII) have also been taken into consideration, not to mention EU agricultural reform. Moreover, the projections take into account the expectation that emission-reducing technologies will be established. This includes technologies directed at reducing ammonia evaporation in livestock housing units and an increase in the biogas treatment of slurry.

In the period from 1990 to 2004, the emission of greenhouse gases declined from 13,050 ktonnes  $CO_2$  equivalents to 10,000 ktonnes  $CO_2$ equivalents, and it is expected to fall further to 8,690 ktonnes  $CO_2$ equivalents in 2025(30). This means that in the period from 2004 to 2025(30), emissions are expected to fall by 13% – see Table 7.1.

Methane emissions will be reduced as the number of cattle in production falls as a result of the rise in milk yield. The fall in the number of cattle also contributes to a degree to a fall in the nitrous oxide emission, but the reduction in the emission from the leaching of nitrogen (Nleaching) and artificial fertiliser is of greater importance. It is expected that N-leaching will be reduced as a result of initiatives implemented in connection with VMPIII. Artificial fertiliser use is expected to fall, partly due to the decrease in land area under agricultural cultivation and partly due to improved utilisation of nitrogen in animal manure.
Measures in the form of technologies to reduce ammonia emissions in the stable and expansion of biogas plant do not contribute to significant changes in the total greenhouse gas emission. Both the greenhouse gas emission related to the emission of ammonia and emission reductions from biogas production are relatively minor emission sources, contributing to the total greenhouse gas emission with approx. 4%, in total. At the current time, there are no technical measures in agriculture which are focused directly at reducing greenhouse gas emissions.

|                         | CRF category                   | Emission of greenhouse gases from the agricultural sector | 1990   | 2000   | 2004   | 2005   | '2010' | '2015' | 2020   | 2025(30) |
|-------------------------|--------------------------------|-----------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|----------|
| CH <sub>4</sub> (Gg)    | 4A – Enteric Fermentation      | Digestive processes                                       | 155.19 | 136.28 | 129,07 | 127.66 | 122.96 | 116.24 | 112.08 | 108.33   |
|                         | 4B - Manure Management         | Animal manure                                             | 35.90  | 46.12  | 47.86  | 48.96  | 50.08  | 49.82  | 50.05  | 50.30    |
|                         | 4B- Manure Management          | Biogas treatment – slurry                                 | -0.11  | -0.68  | -1.17  | -1.36  | -2.22  | -2.33  | -2.33  | -2.33    |
|                         |                                | CH4, total (Gg)                                           | 190.98 | 181.73 | 178.10 | 175.27 | 170.83 | 163.73 | 159.80 | 156.29   |
| N₂O (Gg)                | 4B- Manure Management          | Animal manure                                             | 2.21   | 1.97   | 1.85   | 1.84   | 1.82   | 1.80   | 1.77   | 1.73     |
|                         | 4B- Manure Management          | Biogas treatment – slurry                                 | 0.00   | -0.03  | -0.05  | -0.06  | -0.10  | -0.10  | -0.10  | -0.10    |
|                         | 4D.1 – Direct Soil Emissions   | Commercial fertilisers                                    | 7.69   | 4.83   | 3.97   | 3.78   | 3.52   | 3.31   | 3.21   | 3.13     |
|                         |                                | Animal manure applied to field                            | 3.51   | 3.40   | 3.56   | 3.61   | 3.67   | 3.67   | 3.66   | 3.62     |
|                         |                                | N-fixing crops                                            | 0.88   | 0.76   | 0.60   | 0.62   | 0.61   | 0.60   | 0.58   | 0.57     |
|                         |                                | Crop residues                                             | 1.17   | 1.09   | 1.01   | 1.02   | 1.00   | 0.98   | 0.96   | 0.94     |
|                         |                                | Cultivation of organic soils                              | 0.38   | 0.36   | 0.35   | 0.23   | 0.23   | 0.23   | 0.23   | 0.23     |
|                         | 4D.2 – Animal Production       | Grazing                                                   | 1.01   | 0.99   | 0.93   | 0.94   | 0.84   | 0.78   | 0.76   | 0.73     |
|                         | 4D.3 – Indirect Soil Emissions | Ammonia evaporation                                       | 1.72   | 1.33   | 1.22   | 1.19   | 1.13   | 1.07   | 1.03   | 1.01     |
|                         |                                | N-leaching                                                | 10.50  | 7.05   | 6.49   | 6.30   | 5.94   | 5.63   | 5.48   | 5.35     |
|                         | 4D.4 - Other                   | Wastewater used as fertiliser                             | 0.09   | 0.17   | 0.26   | 0.23   | 0.22   | 0.22   | 0.22   | 0.22     |
|                         |                                | N <sub>2</sub> O, total (Gg)                              | 29.15  | 21.92  | 20.19  | 19.70  | 18.89  | 18.19  | 17.79  | 17.44    |
| CO <sub>2</sub> -equiv. |                                |                                                           |        |        |        |        |        |        |        |          |
| (million ton-<br>nes)   |                                | CH <sub>4</sub>                                           | 4.01   | 3.82   | 3.74   | 3.68   | 3.59   | 3.44   | 3.36   | 3.28     |
| ,                       |                                | N <sub>2</sub> O                                          | 9.04   | 6.79   | 6.26   | 6.11   | 5.86   | 5.64   | 5.51   | 5.41     |
|                         | 4. GHG – Agriculture, total    | Total - CO2 equiv. million tonnes                         | 13.05  | 10.61  | 10.00  | 9.79   | 9.44   | 9.08   | 8.87   | 8.69     |

#### Table 7.1 Expected development in the emission of greenhouse gases from the agricultural sector from 2004-2025(30)

# 7.2 Assumptions for the projection

In this section, a short review of the assumptions is made, which is revised and updated in relation to the earlier projections (Gyldenkærne & Mikkelsen 2004). The review concerns the establishment of ammoniareducing technology in the stable, extension of biogas production, increased requirements for the utilisation of N in animal manure resulting from the Plan for the Aquatic Environment III (VMPIII), as well as updating the assumptions for cattle and pig production.

# 7.2.1 Livestock production

Assumptions made for production of dairy cows and slaughter pigs have been updated. Developments in recent years have shown that milk yield can be assumed to rise more rapidly than assumed in earlier projections. Moreover, the recently approved EU agricultural reform has been assessed to contribute to a slightly higher growth in the production of slaughter pigs than assumed in earlier projections.

## Slaughter pigs

More than 80% of Danish pork is exported and production, therefore, is heavily dependent on conditions in the export market. Jacobsen et al. (2003) have assessed that pig production in the period 2001 to 2010 will increase by 1.1% a year; a growth rate considerably lower than that displayed since the beginning of the 1990s. The lower growth rate is due to competition from USA and other European countries, as well as increased import in the domestic market (Jacobsen et al. 2003, Andersen 2002). The EU's agricultural reform (CAP) has now been agreed and will mean, according to Jacobsen et al. (2003), a further 2-3% increase in pig production over the period as a whole, to 2010. This equates to an additional increase of 0.27% per year – i.e. a total of 1.37% per year over the entire period 2001-2010.

Future expansion in production will take place in the larger farm units and, to a degree, will be impeded by the stricter environmental regulations in e.g. VMP III, the Water Framework Directive and the Nitrate Directive (Andersen 2002). Requirements (such as those for a reduction or maintenance of the level of ammonia emissions and smell) form part of many farmers' applications for expanding production (with potential requirements regarding greenhouse gas emissions in future), especially, as would be expected, in areas with sensitive natural habitats. Requirements for reduced emissions can, to some degree, be met via the assistance that technological developments can offer. However, it is doubtful whether technology alone will be able to allow production to grow at the same rate as the development from 1995 to 2004. Therefore, it is assessed that the agricultural reform will contribute to additional growth in pig production, which at the same time will be restricted by increased environmental requirements. In the projection, an increase in production of 1.3% per year is assumed in the period 2001-2015. Thereafter, from 2015-2025(30), the growth rate is estimated to reduce to 0.5% per year. This equates to a rise in pig production from the 23.7 million slaughter pigs produced in 2003 to 27.7 million in 2015, and 29.1 million in 2025(30).

#### Sows

The development during the period 1995-2003 shows an increase in the number of piglets per sow of 0.3 piglets/sow/year. In the projection, the same development is assumed in the future, to 2025. In 2003, the number of piglets produced was 21.8 per sow. A development of 0.3 piglets/sow/year results in an average production of 25.4 piglets/sow in 2015 and 28.4 piglets/sow in 2025.

### Dairy cattle

In the projection to 2030, an increase in the efficiency of dairy yield of 180 kg milk per cow per year is assumed from 2003 to 2015. From 2015 to 2025(30), the rate of increase is not expected to be as high and, in the projection, is assumed to be 100 kg milk per cow per year.

In 2003, average milk yield is 7,900 kg/cow/year (Statistics Denmark (DSt)). An increase of 180 kg milk/cow/year means an average milk yield of 9,200 l/cow/year in 2010 (7,900 kg/cow/year + (7 year \* 180 kg/cow/year) and 10,100 kg milk/cow/year in 2015. From 2015, an increase of 100 kg/cow/year is expected, which, in 2025, gives an average milk yield of 11,100 kg milk/cow/year.

The EU milk quota scheme, according to current plans, will be maintained until 2013. Thereafter, however, it is uncertain whether there will be a revised milk quota scheme or whether the scheme will cease to exist altogether for production to function on a world market basis. It is uncertain how Danish milk production will adjust to competition in the world market, but due to the highly intensive production form it is expected that production will not change significantly in relation to current levels. In the projection, it is assumed that the current milk quota will be increased by 1.5% from 2006 and, thereafter, be retained at the same level to 2030. On the basis of a milk quota of approx. 4,790 million kg milk [ (7 911 kg/cow/year \* 596,034 cows) \* (1+0.015) ], the number of dairy cows is estimated in 2010, 2015 and 2025(30) as follows:

2010: 4,790 million kg milk / 9,200 kg/cow/year = 520,700 dairy cows

2015: 4,790 million kg milk / 10,100 kg/cow/year = 474,700 dairy cows

2025: 4,790 million kg milk / 11,100 kg/cow/year = 431,500 dairy cows

#### Bulls and breeding stock

It is assumed that the relationship between dairy cows and bulls is more or less the same from 2003 to 2025(30). It could be assumed that the development in sex quotas for calves will mean a shift in the number of bulls versus breeding stock. However, it is assessed that the overall emission from livestock production will not change considerably as a result of the potential opportunities resulting from sexed semen.

#### Suckler cows

In the projection to 2030, a fall in the number of suckler cows of 15% is assumed due, in part, to relaxation of the subsidy for male cattle, based on the assessment of Jacobsen et al. (2003). In 2003, 112,000 suckler cows (DSt) were produced and a reduction of 15% results in a production of

95,000 suckler cows in 2010. If the subsidy continues to fall, a further reduction in production can be expected. However, the number of suckler cows has been retained at 95,000 to 2025(30) as the increased requirements for the environmental management of certain areas in connection with the Plan for the Aquatic Environment II (VMPII) schemes, the Water Framework Directive and the Nitrate Directive are likely to lead to greater demand for grazing livestock.

### 7.2.2 Nitrogen excretion from livestock

The Danish Institute of Agricultural Sciences (DJF) have in connection with VMPIII prepared a paper which states that a further fall in nitrogen excretion (N-excretion) can be expected as a result of increased feed efficiency (Poulsen et al., 2004). On the basis of this, the calculations for nitrogen excretion for cattle and pigs have been updated.

### Cattle

According to the default values, N-excretion in 2002/03 for dairy cattle (large breed) was 129.9 kg N/animal/year and, provided there is no change in the improvement of feed, N-excretion is expected to rise to 136 kg N/animal/year. However, a rise in feed efficiency where 25% of farm units are operating at highest efficiency, as well as a reduction in digestible protein, could reduce N-excretion to 123 kg N/animal/year – i.e. a reduction of 5.3%. The development until 2004 shows a more or less stable level for N-excretion as well as a rise in milk yield. A fall in N-excretion occurring at the same time as a rise in milk yield would depend on N-excretion being prioritised as far as research is concerned.

In the projection, it is assumed that it is possible to reduce N-excretion by 5.3% over the years from 2003 to 2025 - i.e. by 4% to 2015 and by a further 1.3% in the period 2015-2025. Based on this, Table 7.2 shows the N-excretion figures used in the projection. It is assumed that the relationships between N ab Animal/N ab Stable and N ab Animal/N ab Storage are the same as in 2003.

| ······································ |               |               |               |               |  |  |
|----------------------------------------|---------------|---------------|---------------|---------------|--|--|
| N-excretion dairy cows                 | 2003          | 2010          | 2015          | 2025(30)      |  |  |
|                                        | kg N/cow/year | kg N/cow/year | kg N/cow/year | kg N/cow/year |  |  |
| Large breed                            | 130.0         | 126.9         | 124.8         | 123.1         |  |  |
| Jersey                                 | 107.1         | 104.6         | 102.8         | 101.4         |  |  |

Table 7.2 N-excretion for dairy cows - figures used in the projection to 2030

#### Pigs

Due to the relatively large difference in nitrogen excretion for the best versus the worst farm units, the Danish Institute of Agricultural Sciences (DJF) assesses that in future there will be a significant potential for improving feed efficiency and, thereby, reducing N-excretion. It is, therefore, assumed in the projection that the average in 2025 will be equivalent to the average for 25% of the 'best' (in this respect) farming units to-day.

By changing feed composition, DJF expect that N-excretion for sows can be reduced from 27.2 to 21.5 kg N/sow/year (a reduction of 21%) – this reduction is based on 23.5 piglets per annual sow. For slaughter pigs, Nexcretion is expected to fall from 3.25 to 2.90 kg N/ pig produced /year (a reduction of 11%). In the projection, it is assumed that the reduction in N-excretion for sows and slaughter pigs will occur over a period from 2003 to 2025. For sows, a lower reduction than that given by DJF is assumed, because, at the same time, a rise in the number of piglets per annual sow is expected. It is assumed that a reduction in N-excretion of 4% in 2015, and 8% in 2025, will occur for sows in relation to the 2003 level. For slaughter pigs, a reduction in relation to the 2003 level of 6% in 2015 and a total of 11% in 2025 is assumed. In Table 7.3, the figures for N-excretion used in the projection in 2010, 2015 and 2025(30) are given.

 Table 7.3
 N-excretion for pigs – figures used in the projection to 2030

| N-excretion for pigs | 2003           | 2010           | 2015           | 2025(30)      |  |
|----------------------|----------------|----------------|----------------|---------------|--|
|                      | kg N/pigs/year | kg N/pigs/year | kg N/pigs/year | kg N/pig/year |  |
| Pigs                 | 27.17          | 26.54          | 26.08          | 25.00         |  |
| Slaughter pigs       | 3.25           | 3.14           | 3.06           | 2.89          |  |

DJF assesses that there is potential for a reduction in N-excretion for other livestock production, but that the reduction will require implementation of a considerable research effort in this area. In the projection, N-excretion for other livestock categories has been retained unchanged at a level equivalent to production conditions in 2003. Cattle and pig production contributes with by far the largest share of the animal manure emission – approx. 80%. The remaining livestock categories are not, therefore, close to being of so much importance in assessing the future total greenhouse gas emission.

### 7.2.3 Requirements for nitrogen utilisation in animal manure

Under evaluation of VMPIII in 2008 and 2011, a position will be taken on whether it is possible to set stricter requirements for the utilisation of the nitrogen content in animal manure of a further 4.5 - 5%. In order to achieve the target set by VMPIII for a 13% reduction in nitrogen leaching, as well as research in improvements of feed efficiency, this will require stricter demands for N-utilisation in animal manure. This represents the basis for the further tightening of the requirements for the utilisation of nitrogen being included in the projections.

For mink manure, requirements are sharpened in a way corresponding to those for cattle slurry in the first period 2005-2009 – i.e. the projection assumes stricter requirements from 2005. For the remaining livestock categories, N-utilisation is assumed to be increased by 2.5% from 2010 and a further 2% from 2015. This means that 80% of the nitrogen in pig slurry and 75% in cattle slurry will be incorporated in the farmers' fertiliser accounts from 2015.

## 7.2.4 N-leaching

In VMPIII, focus is furthermore directed at improvements in feed utilisation, protection of especially vulnerable habitat areas, taking areas out of production for establishment of wetlands and forest, as well as stricter requirements with regard to handling animal manures. Based on these approaches, N-leaching from the root zone is expected to fall by 13% to 2015. This corresponds to a reduction in N-leaching from 164,200 tonnes N in 2003 to approx. 142,800 tonnes N in 2015. This is assumed on the basis that N-leaching in 2020 and 2025(30) is reduced by 15% and 17%, respectively, in relation to 2003 – equivalent to 139,500 kt N in 2020 and 136,200 kt N in 2025(30).

### 7.2.5 Use of artificial fertilisers

Consumption of artificial fertilisers depends on the amount of nitrogen in animal manure, requirements for N-utilisation and area under agricultural cultivation. In the projection, it is assumed that there is no significant change in the distribution of crops in relation to 2003 – i.e. that the total nitrogen demand per unit of area under cultivation does not change to a marked degree.

Total N-excretion falls from 2003-2025 as a result of improved Nutilisation. Use of nitrogen in artificial fertilisers is predicted to fall by about 20% as a result of the stricter requirements with regard to Nexcretion, ammonia-reducing measures in the stable and the fall in land area in agricultural use.

| Table 7.4 | Expected | development in | consumption | of artificial fertilisers |
|-----------|----------|----------------|-------------|---------------------------|
|-----------|----------|----------------|-------------|---------------------------|

|                                                         | 2003 | 2010 | 2015          | 2020 | 2025(30) |
|---------------------------------------------------------|------|------|---------------|------|----------|
|                                                         |      | m    | illion tonne: | s N  |          |
| N in animal manure (N ab storage)                       | 273  | 266  | 262           | 256  | 251      |
| N which is included in the farmers' fertiliser accounts | 134  | 142  | 146           | 145  | 144      |
| N in artificial fertilisers                             | 201  | 183  | 171           | 167  | 163      |

#### 7.2.6 Agricultural area

Developments from 1985 to 2003 show a fall in agricultural land area of 0.35% per year as a result of urban development in the form of towns and infrastructure, but also due to the afforestation. From 1990 to 2000, on average, 4,000 ha of forest has been planted each year, where a proportion of the area was formerly agricultural land. In the projection, a continued fall in agricultural land area of 0.35% is expected over the period 2003-2015, which is equivalent to 110,000 ha or 9,100 ha per year. Additionally, a further decrease in the area of agricultural land is taken into account for the period 2003-2015 due to the effects of VMPIII, such as increased afforestation and the establishment of wetland areas total-ling 30,000 ha. This means that the agricultural land area is expected to fall until 2015 by a total of 140,000 ha (11,600 per year or 0.44% per year) and comprises 2,518 thousand ha in 2015.

2003-2015 – fall in agricultural land area of 140,000 ha (5.2% or 0.44% per year)

- fall of 9,100 ha per year = 110,000 ha
- increased afforestation; 1,500 ha/year = 18,000 ha
- wetland area; 1,000 ha/year = 12,000 ha

2015-2025 – fall in agricultural land area of 86,800 ha (fall of 3.4% as compared with 2015 or 0.35% per year)

| Table 7.5 | Agricultural | land area | in the | projection |
|-----------|--------------|-----------|--------|------------|
|-----------|--------------|-----------|--------|------------|

|                                      | 2003  | 2015  | 2020  | 2025(30) |
|--------------------------------------|-------|-------|-------|----------|
| Agricultural land area<br>(1 000 ha) | 2 658 | 2 518 | 2 475 | 2 431    |

It is not thought that there will be any significant changes in the distribution of crop types in relation to the distribution in 2003. The area of setaside is not expected to be affected either by the requirements of VMPIII for increased area for the establishment of wetlands and buffers along watercourses and lakes.

### 7.2.7 Technology

Structural developments have caused a reduction in the number of farm units, but an increase in their size and the trend is likely to continue. Danish Agriculture (Dansk Landbrug, 2004) predicts that, in 2015, an average full-time farming unit will be of 160 ha – i.e. almost double the area under prevailing conditions today – and that the number of farm units will fall from 48,600 in 2003 to 31,600 in 2015. In connection with the predicted increase in farm size, a number of farm units in some geographic locations will be subject to the requirement that environmental impact be reduced or maintained at the same level as under the production level prevailing at the time. This will mean that the demand for existing technological solutions to reduce environmental impact will rise, as well as those technologies made possible in future. This will be especially relevant for units wishing to increase their production in sensitive areas or close to vulnerable habitat types.

#### **Biogas production**

The use of liquid slurry in the production of biogas will contribute to a reduction in the emission of methane as well as nitrous oxide.

In the Danish Energy Authority's latest projections from April 2005, a positive development in biogas production is expected (Energistyrelsen 2005). At present, approx. 5% of liquid slurry is used in biogas production, equivalent to approx. 1.6 million tonnes liquid slurry and, according to the energy projections, this is expected to rise to 4 million tonnes in 2010 (Søren Tafdrup, pers. comm.). This will mean a reduction in the greenhouse emission of 0.08 million tonnes  $CO_2$  equivalents in 2010 (Table 7.6). In the projection, no further extension of the use of liquid slurry in biogas production is assumed from 2010 to 2025(30).

| Table 7.6 | Expected development in liquid slurry used in biogas production  |        |        |                                           |  |  |  |
|-----------|------------------------------------------------------------------|--------|--------|-------------------------------------------|--|--|--|
|           | Million tonnes liquid slurry used<br>in the production of biogas | F      | sion   |                                           |  |  |  |
|           |                                                                  | Gg CH₄ | Gg N₂O | Million tonnes<br>CO <sub>2</sub> -equiv. |  |  |  |
| 2003      | 1.6                                                              | 0.93   | 0.04   | 0.03                                      |  |  |  |
| 2004      | 2.0                                                              | 1.17   | 0.05   | 0.04                                      |  |  |  |
| 2010(30)  | 4.0                                                              | 2.33   | 0.10   | 0.08                                      |  |  |  |

Current biogas production corresponds to approx. 5% of the slurry being treated to produce biogas and the effect estimated is assessed to contribute to a reduction in the total greenhouse gas emission of less than 0.5%.

#### Technologies to reduce ammonia emissions

Currently, the use of technologies to reduce ammonia emissions is limited and is estimated to occur in less than 1% of total livestock production. These technologies are primarily directed towards the reduction of ammonia evaporation, which does not itself have a direct effect on greenhouse gas emissions. It does, however, have an indirect effect as the nitrous oxide emission is closely linked with the nitrogen cycle. In the projection, it has been decided to include the effects from ammoniareducing technologies for dairy cows and slaughter pig production, these being the most important for total livestock production.

#### Dairy cow production

In 2003, according to Statistics Denmark, there were 596,000 dairy cows, of which 63% are estimated to be housed in stable systems with cubicles, equating to 375,000 dairy cows. Almost all dairy cattle in 2015 are expected to be housed in cubicle systems. I.e. for the 475,000 dairy cows expected in 2015, new cubicles will have to be built for approx. 100,000 cows. It is assumed that approx. 20% of the existing stables will have to be replaced – i.e. approx. 75,000. It is, therefore, assumed that between 2003 and 2015, new stabling will have to be built to house approx. 175,000 new cubicles.

Reduced numbers of farming units means existing production within the individual units will expand. In many cases, requirements for reduced environmental impact will apply, including requirements with regard to ammonia evaporation from e.g. livestock housing. In the projection, it is assumed that a requirement for a 50% reduction in ammonia evaporation from the stable during manure storage and application will apply to half of the 175,000 new housing places. I.e. the requirement will cover 85,000 dairy cows, equivalent to approx. 20% of the total production in 2015. To 2025, it is estimated that requirements with regard to the application of reduction technologies will apply for 30% of total production.

Existing technologies currently focused on reducing ammonia evaporation in dairy stables are treatment of slurry with sulphuric acid and the establishment of prefabricated, solid, drained floors, which are expected to be able to reduce evaporation in the stable by 50% compared with stables with slatted floors (BAT 107.04-51 and 107.04-52). It cannot, however, be ruled out that other technologies with greater reduction potentials may be brought into use at a later date. Treatment of slurry with sulphuric acid will mean that a greater proportion of the nitrogen in the slurry will be retained in ammonium-form, which is by far less volatile than ammonia. This means that ammonia evaporation is also reduced under storage and under application of animal fertilisers.

#### Slaughter pig production

Slaughter pig production is predicted to increase from 23.7 million slaughter pigs in 2003 to 27.7 million slaughter pigs in 2015, i.e. an increase of 4 million slaughter pigs. It is assumed that the proportion of pigs on partially slatted flooring will increase from 35% in 2003 to 50% in 2015 – i.e. production of a further 5.5 million pigs. This means an increase in the number of new stables for production of 9.5 million pigs. Moreover, replacement of stable housing for 30% of the existing production, corresponding to 5.5 million pigs, is assumed. I.e. a total require-

ment is foreseen for new stabling for production in the region of 15 million slaughter pigs.

In the projection, it is assumed that for half of this production in new stabling, there will be requirements set for the implementation of technologies for the reduction of ammonia evaporation in the stable by 70% – i.e. applying to 7.5 million finished slaughter pigs. This equates to the establishment of technology for approx. 30% of total slaughter pig production in 2015. It is assumed that the establishment of reduction technologies will apply to 40% of production in 2015.

Good opportunities exist for ammonia limiting measures in pig housing. Chemical and biological air-cleaning is currently installed in around 30 housing units and acid cleaning equipment has similarly been installed in at least 30 housing units. Depending on the air cleaning system selected, it is predicted that ammonia evaporation can be reduced by between 60-95% (BAT 106.04-58, BAT 106.04-57, Danske Slagterier 2004, Landscentret 2002 and 2005). Sulphuric acid treatment equipment for pig slurry in stable systems with partially slatted floors is predicted to be able to reduce ammonia evaporation in the stable by 80% (BAT 106.04-54). In the projection, an average reduction factor of 70% is used in the stable, under storage and field application.

 Table 7.7
 Predictions regarding establishment of ammonia-reducing technology in the stable

|                                | 2015                                             | 2025                                             |
|--------------------------------|--------------------------------------------------|--------------------------------------------------|
|                                | Share of production with<br>reduction technology | Share of production with<br>reduction technology |
| Dairy cattle (50 % reduction)  | 20%                                              | 30%                                              |
| Slaughter pigs (70% reduction) | 30%                                              | 40%                                              |

# 7.3 Summary

Livestock farming is moving in the direction of larger operating units which are expected to have higher productivity compared with today's average. This entails a general increase in yield per livestock unit produced, better utilisation of feed, improved handling and utilisation of manure – measures which lead to a reduction in greenhouse gas emissions. There is no doubt that the emission of both ammonia and greenhouse gases from the agricultural sector will be reduced over time, but it is more difficult to predict the rate at which this will occur and the limit for how much the emission can be reduced. This depends on general structural developments in farming and developments within environmental regulation on production, especially for larger farm units. EU agricultural policy also plays a deciding role and, of course, the conditions for export and import of agricultural products.

In the projection, the greenhouse gas emission is expected to fall from 10.00 million tonnes  $CO_2$  equivalents in 2004 to 8.69 million tonnes  $CO_2$  equivalents in 2025(30) – corresponding to a fall of 13%. The reduction in the methane emission will occur as a result of the fall in the number of cattle which, in turn, stems from rising milk yields. The reduction in nitrous oxide emission is due mainly to a reduction in N-leaching, stem-

ming from the effects of VMPIII and a fall in the use of artificial fertilisers, resulting, in turn, from improvements in the utilisation of nitrogen in animal manure and the fall in land area under agricultural cultivation.

Establishment of certain technical measures, such as ammonia-reducing measures in the stable and expansion of biogas production, is taken into account. As the ammonia emission, however, is just one of the more minor sources of the nitrous oxide emission, a reduction will have limited effect on total greenhouse emissions. Ammonia evaporation is one of many sources of greenhouse gas emissions, contributing with less than 4% of total emissions. Therefore, a marked reduction in ammonia evaporation e.g. 10% in 2004, assuming that the remaining sources of emissions are maintained at the same level, would give a somewhat smaller reduction in the total greenhouse emission of 0.4%. A fall in ammonia evaporation can, however, have a positive bonus effect for the total emissions as an improvement in the nitrogen utilisation of manure will lead to a reduction in the emission from other sources.

Biogas-treated slurry contributes in 2003 to a reduction of 0.04 million tonnes  $CO_2$  equivalents. Therefore, to achieve a significant effect on the total emission, a considerable increase in the existing biogas production would be required. Apart from the biogas treatment of slurry, no other technical solutions exist in agriculture today which are specifically aimed towards limiting greenhouse gases.

# References

Andersen, Lill 2002. Dansk svineproduktion i perspektiv: udviklingsmuligheder og udfordringer. Fødevareøkonomisk Institut – Rapport nr. 140

Dansk Landbrug 2004. Landøkonomisk Oversigt 2004 – kapitel 12.

Danske Slagterier 2004. Biologisk luftrensning – resultater og erfaringer. DS-nyt - nummer 6

Energistyrelsen (2005): Fremskrivning af Danmarks energiforbrug. April 2005.

Gyldenkærne, S. og Mikkelsen, M.H. 2004. Projection of Greenhouse Gas Emission from the Agricultural Sector until 2017. Research Notes from NERI No. 194.

Poulsen, H.D., Lund, P., Fernándes, J.A., Holm, P.B., 2004. Notat vedr. muligheder for at reducere husdyrgødningens indhold af kvælstof via fodringen. Notat ifm. forberedelse af Vandmiljøplan III.

Jacobsen, J.H., Jensen, J.D., Christensen, T., Andersen, M., Ørum, J.E., Abildtrup, J., Husum, H., Hasler, B., Schou, J.S. & Hussain, Z.B. 2003: Omkostninger ved reduktion af næringstoftabet til vandmiljøet. Rapport fra Økonomigruppen (F6b) – Forberedelse af vandmiljøplan III (udkast, november 2003).

Landscentret 2005. Hollandsk luftvasker til fjerkræ- og svineproduktion. Info – Byggeri og Teknik nr. 1402 af Helle Birk Domino

Landscentret 2002. Biofiltre – Landbrugsinfo 3/10-2002 af Arne Grønkjær.

Tafdrup, Søren. Personlig kommunikation. Energistyrelsen, afd. for energiforsyning.

Statistic Denmark. Landbrugs- og Gartneritællingen 2004

VMPIII – aftale. Aftale om Vandmiljøplan III 2005-2015 mellem regeringen, Dansk Folkeparti og Kristendemokraterne, 2. april 2004 (<u>WWW.v-</u><u>mp3.dk</u>).

# 8 Landfill sites

Deposited waste at landfill sites gives rise to CH<sub>4</sub> emissions.

CH<sub>4</sub> emissions are calculated by means of an emissions model, where activity data is annual data for the amount of waste deposited and where emissions factors, which are the amounts of CH<sub>4</sub> emitted per amount of waste deposited, result from model assumptions about the decay of waste and release of CH<sub>4</sub>.

# 8.1 Activity data

Waste quantities are collected by the Danish Environmental Protection Agency (DEPA) under the 'Information System for Waste and Recycling' ('Informations System for Affald og Genanvendelse', ISAG). ISAG was used for the first time in 1993. ISAG is based on the principle that Danish waste treatment plant should register and report a range of information on all waste which is weighed-in or weighed-out of the plants. The information for the previous year has to be reported to DEPAeach year, by 31 January at the latest. The report for 2004 is number twelve. The results of this reporting are published in the form of annual waste statistics, 2004 being the latest year; see DEPA (Miljøstyrelsen), 2005a. Reports before this latest report are DEPA (2004a) and DEPA (2004b).

The annual statistics include the amount of waste sent to landfill.

# 8.2 Emissions model

The model has been developed and used in connection with the historic emissions inventories prepared for the Climate Convention. As a result, the model has been developed in accordance with the guidelines found in the IPCC Guidelines (1996) and IPCC Good Practice Guidance (2001). On the recommendation of these reports, a so-termed Tier 2 method, a decay model, has been selected for the model. The model is described in the report which is prepared for the Climate Convention, the latest being the 2006 NIR report. In short, the model assumes that the carbon in the deposited waste decays and is converted to CH4. In the model, this process is assumed to unfold in such way that, 10 years after deposition, half of the carbon has been converted to CH<sub>4</sub>. The model and its results have, in connection with the annual emissions inventories under the Climate Convention, been subject to reporting review processes. This results in an incentive for the model's continued use in basically unchanged form in preparation of the emissions inventories. The model is built in one file in Microsoft Excel.

# 8.3 Historic emissions

In connection with greenhouse gas inventories for the Climate Convention, a so-named key-source analysis is carried out. The analysis aggregates CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O and the F-gases in relation to their respective greenhouse gas potentials, and lists these on a source level in relation to the Danish national total figures for greenhouse gas emissions. In an analysis of this type, carried out most recently in 2004, the CH<sub>4</sub> emission from the landfill of waste is categorised as a key-source. This is because this source, out of the 71 sources the analysis comprises, belongs to the 21 largest sources whose greenhouse gas emissions totals comprise 95% of the national total. The landfill of waste is calculated to rank as no. 10 in size among the 21 key sources. The CH<sub>4</sub> emission from landfill sites comprised 1.6% of the national total in 2003. Historic emissions, as well as the amounts of waste deposited, are shown together with the projected waste amounts and emissions in Table 8.2. In this table, the column 'potential emissions' expresses the total emission stemming from waste landfilled in a given year and 'actual gross emissions' expresses the actual emission estimated by means of the decay model. The emission to the atmosphere is, thereafter, 'actual gross' minus CH4 combusted in landfill gas plant.

# 8.4 Projections

Waste strategies have been prepared in connection with the waste plan, 'Waste 21' ('Affald 21'), which covers the period 1998-2004. Many of the initiatives in this plan relate to increased sorting of certain waste fractions, with the intention to move away from the incineration of waste towards recycling. Furthermore, the plan aims to stabilise the total amount of waste produced.

The government's 2003 'Waste Strategy 2005-2008' ('Affaldsstrategi 2005-2008') is based on the principle of decoupling the growth in the amount of waste produced from economic growth. The projections carried out here are based on what this report mentions concerning waste targets. The results of work on indicators in the area of waste, also mentioned in the report, may have implications for updating projections at a later date, as the desirability of recycling and incineration in relation to landfill may lead to new initiatives which may, in turn, lead to changes in the amount of waste sent to landfill.

The waste strategy provides targets for the amount of waste to be sent to landfill for the year 2008. The waste strategy's reported distribution (%) by sector of waste deposited at landfill is presented for 2001 in Table 8.1, along with the targets for 2008.

|                                               | Distribution 2004 | Target 2008 |
|-----------------------------------------------|-------------------|-------------|
| Household waste                               | 1                 | 0           |
| Large items of waste                          | 19                | 25          |
| Garden waste                                  | 1                 | 0           |
| Waste from institutions, commerce and offices | 8                 | 5           |
| Industry                                      | 24                | 15          |
| Construction                                  | 4                 | 8           |
| Wastewater plants                             | 5                 | 5           |
| Power stations                                | 4                 | 10          |
| Total                                         | 8                 | 9           |

Table 8.1 Share (%) of total landfill

Projections of quantities of waste produced, in connection with ISAG reporting, are carried out using the model FRIDA (FRemskrivning af Isag DAta – Projection of ISAG Data) developed by researchers in the Department of Policy Analysis at the research centre, Risø (Miljøstyrelsen (2006)). The model is a further development of the model described in the report from DEPA (Miljøstyrelsen, 1998) and is based on the waste data from the ISAG system as well as data for economic development from the ADAM model. Projection of the development in the amount of waste produced is based on the Ministry of Finance's projection of the economic development April 2006, on the energy strategy (Energistrategi 2025) prepared by the Danish Ministry of Transport and Energy, as well as on ISAG data up to and including 2004.

For the amount of waste deposited at landfill, this projection uses the waste strategy 2005-2008's target, i.e. that 9% of the total amount of waste produced goes to landfill in 2008. Furthermore, the FRIDA model's projection of total waste amount is used. With the total amount of waste produced for 2008 calculated as described, waste amounts for 2008 are then calculated on the basis of the same distribution as registered in 2003. The amount of waste for the respective waste fractions is, thereafter, interpolated between the registered values for 2003 and the projected values for 2008. After 2008, the distribution of the various waste fractions for 2003 and 2008 is retained. For 2009-2020, it is projected that the amount of waste deposited is 9% of the Frida model's projected total waste figure. After 2020, projected waste amounts are not found in the Risø model. In this part of the projection, the total amount of waste deposited is retained as the amount projected for 2020.

The emission projection uses the same  $CH_4$  emission model used for calculation of the historic emissions. The resulting projections of the amounts of waste produced and  $CH_4$  emissions can be seen in Table 8.2 and Figure 8.1. For the emission of  $CH_4$ , it is characteristic of the disintegration model that the time-series fluctuations for the amount of waste deposited are not nearly as visible in the emission.

The recovery of CH<sub>4</sub> at landfill sites is deducted from the CH<sub>4</sub> emission calculated; see Table 8.2. Official energy statistics (Energistatistikken) are used for this purpose for the historic data. With regard to the projection of the amount of landfill gas recovered, the Danish Energy Authority's general projections only contain projection of biogas production, which in this connection is not viewed to be of use. In work carried out for DEPA (Miljøstyrelsen, 2005b), the firm LFG-Consult (H. C. Willumsen) has reviewed Danish landfill sites and, in this connection, scenarios for

methane recovery have been prepared for the years 2005-2009. In the projections in hand, Table 8.2, a scenario (Miljøstyrelsen, 2005b) has been used without optimisation of landfill sites. For the period 2010-2030, an exponential extrapolation has been carried out; see Figure 8.2.

The overall projection is shown in Table 8.3.

Model runs, which are not included here, are believed to show that the projection of the emission of the total amount of waste is of most significance for emission projections, and the distribution across the various waste fractions landfilled is of less importance. Closer documentation here would demand that, with data from the projections with the Risø model, landfilled waste amounts are projected, corresponding to ISAG waste fractions.

Table 8.2 Amount of waste deposited at landfill and CH<sub>4</sub> emissions. Historic data: 1993-2004. Projections: 2005-2030.

| Year |                        |                |                 | Quantities of w                     | vaste (1 000 tonne | es)                    |                  |       |       | Emi       | issions (1 000 to | ons CH 4)     |      |
|------|------------------------|----------------|-----------------|-------------------------------------|--------------------|------------------------|------------------|-------|-------|-----------|-------------------|---------------|------|
|      | House<br>hold<br>waste | Large<br>items | Garden<br>Waste | Institu<br>tions<br>Commerce<br>and | Industry           | Con-<br>struc-<br>tion | Sewage<br>sludge | Slags | Total | Potential | Actual<br>gross   | For<br>biogas | Net  |
|      |                        |                |                 | offices                             |                    |                        |                  |       |       |           |                   |               |      |
| 1990 | 199                    | 251            | 85              | 109                                 | 822                | 951                    | 222              | 535   | 3175  | 85,2      | 64,0              | 0,5           | 63,5 |
| 1991 | 199                    | 259            | 71              | 120                                 | 824                | 804                    | 193              | 562   | 3032  | 83,7      | 65,3              | 0,7           | 64,6 |
| 1992 | 198                    | 267            | 56              | 131                                 | 826                | 657                    | 165              | 589   | 2890  | 82,2      | 66,5              | 1,4           | 65,1 |
| 1993 | 198                    | 276            | 42              | 141                                 | 828                | 510                    | 136              | 616   | 2747  | 80,7      | 67,4              | 1,7           | 65,7 |
| 1994 | 198                    | 284            | 27              | 152                                 | 830                | 363                    | 107              | 643   | 2604  | 79,2      | 68,2              | 4,6           | 63,6 |
| 1995 | 190                    | 286            | 17              | 128                                 | 779                | 321                    | 101              | 135   | 1957  | 74,7      | 68,7              | 7,4           | 61,2 |
| 1996 | 132                    | 275            | 6               | 135                                 | 822                | 317                    | 117              | 703   | 2507  | 71,4      | 68,8              | 8,2           | 60,7 |
| 1997 | 83                     | 248            | 6               | 170                                 | 707                | 264                    | 130              | 475   | 2083  | 65,9      | 68,6              | 11,1          | 57,5 |
| 1998 | 98                     | 234            | 20              | 161                                 | 746                | 266                    | 124              | 210   | 1859  | 66,3      | 68,5              | 13,2          | 55,3 |
| 1999 | 117                    | 239            | 3               | 164                                 | 582                | 224                    | 126              | 12    | 1467  | 63,5      | 68,2              | 11,5          | 56,7 |
| 2000 | 85                     | 264            | 7               | 152                                 | 611                | 269                    | 94               | 0     | 1482  | 62,5      | 67,8              | 11,0          | 56,8 |
| 2001 | 50                     | 180            | 3               | 150                                 | 583                | 260                    | 64               | 10    | 1300  | 49,9      | 66,6              | 10,0          | 56,6 |
| 2002 | 37                     | 161            | 4               | 137                                 | 520                | 229                    | 48               | 38    | 1174  | 43,9      | 65,1              | 11,2          | 53,9 |
| 2003 | 24                     | 143            | 4               | 131                                 | 379                | 170                    | 55               | 60    | 966   | 37,6      | 63,2              | 7,8           | 55,4 |
| 2004 | 11                     | 132            | 5               | 140                                 | 452                | 172                    | 42               | 46    | 1000  | 37,5      | 61,5              | 10,4          | 51,1 |
| 2005 | 16                     | 146            | 5               | 148                                 | 464                | 185                    | 50               | 54    | 1070  | 40,6      | 60,1              | 7,3           | 52,8 |
| 2006 | 21                     | 161            | 5               | 157                                 | 477                | 198                    | 57               | 63    | 1139  | 43,7      | 59,0              | 6,9           | 52,1 |
| 2007 | 27                     | 175            | 5               | 165                                 | 489                | 212                    | 65               | 71    | 1209  | 46,7      | 58,2              | 6,5           | 51,7 |
| 2008 | 32                     | 189            | 5               | 173                                 | 502                | 225                    | 73               | 79    | 1278  | 49.8      | 57.6              | 6.0           | 51.6 |
| 2009 | 32                     | 191            | 5               | 175                                 | 505                | 227                    | 73               | 80    | 1288  | 50,2      | 57,1              | 5,7           | 51,4 |
| 2010 | 32                     | 189            | 5               | 174                                 | 502                | 225                    | 73               | 79    | 1280  | 49.9      | 56.6              | 5.3           | 51.3 |
| 2011 | 32                     | 192            | 5               | 176                                 | 510                | 229                    | 74               | 81    | 1299  | 50.6      | 56.2              | 5.0           | 51.2 |
| 2012 | 33                     | 194            | 5               | 177                                 | 513                | 230                    | 74               | 81    | 1308  | 51.0      | 55.9              | 4.7           | 51.1 |
| 2013 | 33                     | 196            | 5               | 180                                 | 520                | 233                    | 75               | 82    | 1325  | 51.6      | 55.6              | 4.5           | 51.1 |
| 2014 | 33                     | 197            | 6               | 180                                 | 522                | 234                    | 76               | 83    | 1330  | 51.8      | 55.3              | 4.3           | 51.1 |
| 2015 | 33                     | 199            | 6               | 183                                 | 528                | 237                    | 77               | 84    | 1346  | 52.4      | 55.2              | 4.1           | 51.1 |
| 2016 | 33                     | 200            | 6               | 183                                 | 529                | 237                    | 77               | 84    | 1348  | 52.5      | 55.0              | 3.9           | 51.0 |
| 2017 | 34                     | 200            | 6               | 184                                 | 531                | 238                    | 77               | 84    | 1354  | 52.7      | 54.8              | 3.8           | 51.0 |
| 2018 | 34                     | 202            | 6               | 185                                 | 534                | 240                    | 78               | 85    | 1362  | 53.1      | 54.7              | 3.6           | 51,0 |
| 2019 | 34                     | 202            | 6               | 185                                 | 535                | 240                    | 78               | 85    | 1365  | 53.2      | 54.6              | 3.5           | 51.1 |
| 2020 | 34                     | 202            | 6               | 187                                 | 540                | 240                    | 78               | 86    | 1377  | 53.7      | 54.5              | 3.4           | 51.1 |
| 2020 | 34                     | 204            | 6               | 187                                 | 540                | 242                    | 78               | 86    | 1377  | 53.7      | 54.0              | 2.8           | 51.2 |
| 2029 | 34                     | 204            | 6               | 187                                 | 540                | 242                    | 78               | 86    | 1377  | 53.7      | 53.0              | 2,0           | 51.2 |
| 2030 | 34                     | 204            | 0               | 10/                                 | 340                | 242                    | 10               | 00    | 1377  | 55,1      | 55,9              | 2,7           | 51,2 |



**Figure 8.1** Development of waste deposited at landfill and  $CH_4$  emissions. Historic data: 1993-2004. Projections: 2005-2030. Indexation is in relation to the time series average for the relevant parameter.



**Figure 8.2** Projection of CH<sub>4</sub> recovery at landfill sites (1 000 CH<sub>4</sub> tonnes). For 2005-2009 data according to Danish Environmental Protection Agency (Miljøstyrelsen 2005b). For 2009-2030: exponential extrapolation.

**Table 8.3** Emission of  $CH_4$  from landfill of waste in  $CO_2$ -equiv. (1 000 tonnes =Gg). Historic data: 1993-2004. Projections: 2005-2020.

|                                   | rear | 1990   | 2000   | 2005   | 2010   | 2015   | 2020   | 2025   | 2030   |
|-----------------------------------|------|--------|--------|--------|--------|--------|--------|--------|--------|
|                                   | Note |        |        |        | (1)    | (2)    |        |        |        |
| 6. Solid waste disposal on Land   |      |        |        |        |        |        |        |        |        |
| 1. Managed waste disposal on land |      | 1334,1 | 1192,3 | 1109,0 | 1078,3 | 1072,3 | 1073,8 | 1077,1 | 1075,2 |

(1) 5-year average 2008-2012
(2) 5-year average 2013-2017

### References

Note

IPCC, 1996: Greenhouse Gas Inventory Reporting Instructions. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 1, 2 and 3. The Intergovernmental Panel on Climate Change (IPCC), IPCC WGI Technical Support Unit, United Kingdom, <u>http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.htm</u>

IPCC, 2000: IPCC Good Practice Guidance and Uncertainty Management in national Greenhouse Gas Inventories. <u>http://www.ipcc-nggip.iges.or.jp/public/gp/gpgaum.htm</u>

Miljøstyrelsen, 1998: A Scenario Model for the Generation of Waste. Environmental Project no. 434. <u>http://www.mst.dk/udgiv/Publications-/1998/87-7909-168-7/html-/default\_eng.htm</u>

Miljøstyrelsen, 2004a: Affaldsstatistik 2002 - revideret udgave. <u>http://w-ww.mst.dk/-udgiv/publikationer/2004/87-7614-172-1/pdf/87-7614-174-8.pdf</u>

Miljøstyrelsen, 2004b: Affaldsstatistik 2003. <u>http://www.mst.dk/ud-giv/publikationer/2004/87-7614-458-5/pdf/87-7614-459-3.pdf</u>

Miljøstyrelsen, 2005a: Affaldsstatistik 2004. <u>http://www.mst.dk/udgiv/publika-tioner/2005/87-7614-815-7/pdf/87-7614-816-5.pdf</u>

Miljøstyrelsen, 2005b: Optimering af gasindvinding på deponeringsanlæg i Danmark. <u>http://www.mst.dk/udgiv/Publikationer/2005/87-76-</u>14-763-0/pdf/87-7614-764-9.PDF

Miljøstyrelsen, 2006: En Model til FRemskrivning af Isag DAta FRIDA. Arbejdsrapport 35 <u>http://mim.netboghandel.dk/publ.asp?page=publ-</u>&objno=16285047

Regeringen, 2003: Affaldsstrategi 2005-2008.

# 9 Wastewater treatment

Below, a short overview of the emissions inventories of methane and nitrous oxide from wastewater treatment 1990-2004 is provided, as well a projection to 2030.

In short, the emission calculations for methane are based on the theoretical maximum emission termed, here, 'gross methane emission'. This gross emission is based on the emission from the entire methane potential in the amount of biodegradable organic material in the discharges entering the sewage treatment plants. From this theoretical maximum emission, the methane potential which is used for biogas and other reuse or flared is deducted. The resulting net methane emission is an estimate of the real methane emission in wastewater treatment at sewage works. Central parameters are the industrial contribution to wastewater entering wastewater treatment plants as well as the fraction of sewage sludge which is treated anaerobically. For a detailed review of calculation methodologies, refer to the report Thomsen, M and Lyck, E (2005).

Emission calculations for nitrous oxide are divided into the contribution from the wastewater treatment processes at the sewage plants, termed the direct emission, and a contribution from the discharge from the treatment plants, termed the indirect  $N_2O$  emission.

|      |                                      |                                 | Estimated values                        |                    |                        |                      |
|------|--------------------------------------|---------------------------------|-----------------------------------------|--------------------|------------------------|----------------------|
| Year | CH <sub>4, external combustion</sub> | $CH_{4,\ internal\ combustion}$ | CH <sub>4, sandblasting materials</sub> | $CH_{4, \ biogas}$ | CH <sub>4, gross</sub> | CH <sub>4, net</sub> |
| 1987 | 2.34                                 | 4.79                            | 1.15                                    | 0.08               |                        |                      |
| 1990 | 2.39                                 | 4.67                            | 1.20                                    | 0.24               | 14.42                  | 5.91                 |
| 1991 | 2.41                                 | 4.60                            | 1.34                                    | 0.27               | 14.46                  | 5.84                 |
| 1992 | 2.43                                 | 4.52                            | 1.49                                    | 0.30               | 14.51                  | 5.78                 |
| 1993 | 2.44                                 | 4.44                            | 1.63                                    | 0.32               | 14.91                  | 6.07                 |
| 1994 | 2.46                                 | 4.36                            | 1.78                                    | 0.35               | 16.20                  | 7.24                 |
| 1995 | 2.47                                 | 4.29                            | 1.92                                    | 0.38               | 17.49                  | 8.43                 |
| 1996 | 2.49                                 | 4.21                            | 2.07                                    | 0.40               | 18.79                  | 9.62                 |
| 1997 | 2.19                                 | 4.42                            | 1.23                                    | 0.46               | 20.10                  | 11.81                |
| 1998 | 2.52                                 | 4.05                            | 2.36                                    | 0.45               | 21.42                  | 12.03                |
| 1999 | 2.25                                 | 4.29                            | 2.67                                    | 0.55               | 21.04                  | 11.28                |
| 2000 | 3.64                                 | 3.12                            | 3.61                                    | 0.51               | 21.22                  | 10.34                |
| 2001 | 2.74                                 | 4.28                            | 3.19                                    | 0.43               | 21.65                  | 11.02                |
| 2002 | 1.91                                 | 3.47                            | 2.87                                    | 0.41               | 23.43                  | 14.78                |
| 2003 | 2.07                                 | 4.13                            | 3.08                                    | 0.42               | 24.03                  | 14.26                |
| 2004 | 2.07                                 | 4.13                            | 3.23                                    | 0.39               | 22.96                  | 12.61                |
| 2005 | 2.07                                 | 4.13                            | 3.37                                    | 0.39               | 22.96                  | 12.06                |
| 2006 | 2.07                                 | 4.13                            | 3.52                                    | 0.39               | 23.24                  | 11.72                |
| 2007 | 2.07                                 | 4.13                            | 3.66                                    | 0.39               | 23.52                  | 11.28                |
| 2008 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 23.81                  | 10.75                |
| 2009 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 24.09                  | 10.09                |
| 2010 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 24.37                  | 10.03                |
| 2011 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 24.65                  | 10.31                |
| 2012 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 24.94                  | 10.60                |
| 2013 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 25.22                  | 10.88                |
| 2014 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 25.50                  | 11.16                |
| 2015 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 25.79                  | 11.44                |
| 2016 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 26.07                  | 11.73                |
| 2017 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 26.35                  | 12.01                |
| 2018 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 26.63                  | 12.29                |
| 2019 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 26.92                  | 12.58                |
| 2020 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 27.20                  | 12.86                |
| 2021 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 27.48                  | 13.14                |
| 2022 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 27.77                  | 13.42                |
| 2023 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 28.05                  | 13.71                |
| 2024 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 28.33                  | 13.99                |
| 2025 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 28.62                  | 14.27                |
| 2026 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 28.90                  | 14.56                |
| 2027 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 29.18                  | 14.84                |
| 2028 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 29.46                  | 15.12                |
| 2029 | 2.07                                 | 4,13                            | 7.75                                    | 0.39               | 29.75                  | 15.41                |
| 2030 | 2.07                                 | 4.13                            | 7.75                                    | 0.39               | 30.03                  | 15.69                |

 Table 9.1
 Gross, retained (re-used or flared) methane potentials and net emission of methane from 1990 to 2030 in Gg.

Based on interpolation for reported data, the methane potential converted via external combustion is assessed to be constant, while for internal combustion it is assessed to decline slightly over the period 1987-2002. The total amount of sewage sludge incinerated aligns with the government's target for 2008. The projections assume that the total amount of sewage sludge which is incinerated remains constant at present levels. The rise in retained methane potential is expected to be due to increased reuse of sludge in industrial processes (see the government waste strategy, Regeringen, 2003; Thomsen and Lyck, 2005). The emission calculations are based on data from private and local authority wastewater treatment plants included in the national reports from the Danish Environmental Protection Agency (Thomsen and Lyck, 2005). Any methane emission contribution from wastewater treatment in individual industries is not included in the calculations.

The trend from 1990 to 2005, as well as the regression equations used in the projection to 2030, is shown in Figure 9.1.



Estimated trends in gross, not emitted CH<sub>4</sub> potential and net CH<sub>4</sub> emission

**Figure 9.1** Estimated trends in gross, retained (i.e. recycled or flared) CH<sub>4</sub> potential, and the resulting net CH<sub>4</sub> emission. For use in the projection of the gross emission of methane, the period from 1999 has been used, from which point the contribution of industry to the amount of total organic material at the local authority treatment works is constant and the rise in the gross emission is caused by a real increase in the total amount of organic material in the wastewater entering the works. The curved sequence represented by open squares and white triangles represent the gross and net emission of methane, respectively. The curved sequence represented by crosses represents the total amount retained (recycled or flared) methane potential.

The emission of  $N_2O$  from wastewater treatment plants is divided into a direct emission, from biological treatment processes at the treatment works, and an indirect emission, from the nitrogen which exits the works in the wastewater effluent discharged. The total emission of nitrous oxide is the sum of these two contribution types.

|      | Average, E <sub>N2O,WWTP,direct</sub> |                                     |                              |
|------|---------------------------------------|-------------------------------------|------------------------------|
| Year | (Danish EF)                           | $E_{N2O}$ , effluent in total Tonne | E <sub>N2O</sub> , total [T] |
| 1990 | 17.37                                 | 265.32                              | 282.69                       |
| 1991 | 17.41                                 | 251.93                              | 269.34                       |
| 1992 | 17.47                                 | 219.26                              | 236.73                       |
| 1993 | 19.73                                 | 273.48                              | 293.20                       |
| 1994 | 29.09                                 | 268.38                              | 297.47                       |
| 1995 | 36.65                                 | 238.10                              | 274.76                       |
| 1996 | 44.28                                 | 179.63                              | 223.91                       |
| 1997 | 51.96                                 | 158.21                              | 210.17                       |
| 1998 | 58.69                                 | 153.94                              | 212.63                       |
| 1999 | 52.59                                 | 147.13                              | 199.72                       |
| 2000 | 53.66                                 | 157.22                              | 210.88                       |
| 2001 | 50.20                                 | 134.40                              | 184.60                       |
| 2002 | 50.32                                 | 137.34                              | 187.67                       |
| 2003 | 51.69                                 | 144.03                              | 195.72                       |
| 2004 | 52.36                                 | 144.03                              | 196.39                       |
| 2005 | 52.48                                 | 144.03                              | 196.51                       |
| 2006 | 52.59                                 | 144.03                              | 196.62                       |
| 2007 | 52.70                                 | 144.03                              | 196.72                       |
| 2008 | 52.79                                 | 144.03                              | 196.82                       |
| 2009 | 52.88                                 | 144.03                              | 196.91                       |
| 2010 | 52.96                                 | 144.03                              | 196.99                       |
| 2011 | 53.04                                 | 144.03                              | 197.06                       |
| 2012 | 53.10                                 | 144.03                              | 197.12                       |
| 2013 | 53.15                                 | 144.03                              | 197.18                       |
| 2014 | 53.20                                 | 144.03                              | 197.23                       |
| 2015 | 53.25                                 | 144.03                              | 197.27                       |
| 2016 | 53.29                                 | 144.03                              | 197.31                       |
| 2017 | 53.33                                 | 144.03                              | 197.36                       |
| 2018 | 53.37                                 | 144.03                              | 197.40                       |
| 2019 | 53.41                                 | 144.03                              | 197.44                       |
| 2020 | 53.46                                 | 144.03                              | 197.48                       |
| 2021 | 53.50                                 | 144.03                              | 197.53                       |
| 2022 | 53.55                                 | 144.03                              | 197.57                       |
| 2023 | 53.59                                 | 144.03                              | 197.62                       |
| 2024 | 53.64                                 | 144.03                              | 197.66                       |
| 2025 | 53.68                                 | 144.03                              | 197.70                       |
| 2026 | 53.72                                 | 144.03                              | 197.74                       |
| 2027 | 53.75                                 | 144.03                              | 197.77                       |
| 2028 | 53.77                                 | 144.03                              | 197.80                       |
| 2029 | 53.79                                 | 144.03                              | 197.82                       |
| 2030 | 53.80                                 | 144.03                              | 197.83                       |

Table 9.2 Estimated direct, indirect and total emissions of N<sub>2</sub>O in tonnes.

Calculation of the direct emission and projections are based on population size as well as on a calculation methodology for emissions factors, which is corrected for industry's contribution to the N in the wastewater entering the sewage treatment works. Generally, the industrial contribution is assumed to be constant from 1999 and thereafter. The emission contribution from industry is set at 41.9 % (the average of the contribution in the years 1999-2002) for both projections. Nitrous oxide production takes place under anaerobic as well as aerobic conditions (nitrification and denitrification), but its generation is most pronounced under aerobic conditions. The nitrous oxide emission is expected to remain at a constant level due to the fully optimised cleaning of wastewater effluent which has occurred in connection with the plans for the aquatic environment. The estimated trend in indirect and direct nitrous oxide emission from 1990 to 2030 is illustrated graphically in Figure 9.2 and 9.3.



**Figure 9.2** Trend for direct nitrous oxide emissions from wastewater treatment processes at sewage treatment works. The observed maximum in 1998 cannot be regarded as actual, but a visualisation of the measured data, which is not representative. This explains the relatively large uncertainty in the average national data for the content of nitrogen in wastewater entering sewage treatment works.



**Figure 9.3** Trend for indirect nitrous oxide emissions. The declining trend is due to the results of technological development and the improvement in the treatment processes at sewage works in the form of an increased reduction of P, N and BOD in biological and chemical treatment processes for discharge. The reduction in the discharge of nitrogen is not expected to fall further.

Total  $N_2O$  and net  $CH_4$  emission figures converted to  $CO_2$  equivalents are given in Table 9.3.

|      | Emissions in CO <sub>2</sub> -equiv. (Gg) |                 |
|------|-------------------------------------------|-----------------|
| Year | N <sub>2</sub> 0                          | CH <sub>4</sub> |
| 1990 | 87.63                                     | 125.62          |
| 1991 | 83.50                                     | 122.60          |
| 1992 | 73.39                                     | 121.29          |
| 1993 | 90.89                                     | 127.49          |
| 1994 | 92.22                                     | 152.13          |
| 1995 | 85.17                                     | 176.97          |
| 1996 | 69.41                                     | 202.01          |
| 1997 | 65.15                                     | 248.11          |
| 1998 | 65.92                                     | 252.60          |
| 1999 | 61.91                                     | 236.86          |
| 2000 | 65.37                                     | 217.19          |
| 2001 | 57.23                                     | 231.45          |
| 2002 | 58.18                                     | 310.29          |
| 2003 | 60.67                                     | 299.40          |
| 2004 | 60.95                                     | 264.72          |
| 2005 | 60.99                                     | 253.22          |
| 2006 | 61.02                                     | 246.05          |
| 2007 | 61.06                                     | 236.98          |
| 2008 | 61.09                                     | 225.73          |
| 2009 | 61.11                                     | 211.98          |
| 2010 | 61.14                                     | 210.62          |
| 2011 | 61.16                                     | 216.56          |
| 2012 | 61.18                                     | 222.50          |
| 2013 | 61.20                                     | 228.45          |
| 2014 | 61.21                                     | 234.39          |
| 2015 | 61.23                                     | 240.33          |
| 2016 | 61.24                                     | 246.27          |
| 2017 | 61.25                                     | 252.21          |
| 2018 | 61.27                                     | 258.15          |
| 2019 | 61.28                                     | 264.10          |
| 2020 | 61.29                                     | 270.04          |
| 2021 | 61.31                                     | 275.98          |
| 2022 | 61.32                                     | 281.92          |
| 2023 | 61.33                                     | 287.86          |
| 2024 | 61.35                                     | 293.81          |
| 2025 | 61.36                                     | 299.75          |
| 2026 | 61.37                                     | 305.69          |
| 2027 | 61.38                                     | 311.63          |
| 2028 | 61.39                                     | 317.57          |
| 2029 | 61.40                                     | 323.52          |
| 2030 | 61.40                                     | 329.46          |

Table 9.3  $N_2O$  and  $CH_4$  emissions in  $CO_2$  equivalents and the unit Gg. Inventories: 1990-2004. Projections: 2005-2030

| –uy). |           |                |          |       |       |       |       |       |       |       |
|-------|-----------|----------------|----------|-------|-------|-------|-------|-------|-------|-------|
| CFR s | ector     | Year           | 1990     | 2000  | 2005  | 2010  | 2015  | 2020  | 2025  | 2030  |
|       |           | Note           |          |       |       | (1)   | (2)   |       |       |       |
| 6.B W | aste wate | er handling    |          |       |       |       |       |       |       |       |
|       |           |                | 213.2    | 282.6 | 314.2 | 278.6 | 301.6 | 331.3 | 361.1 | 390.9 |
| Note  | (1)       | 5-year average | 2008-201 | 13    |       |       |       |       |       |       |
|       | (2)       | 5-year average | 2013-201 | 18    |       |       |       |       |       |       |

**Table 9.4** Sum of the emission of  $CH_4$  and N2O from wastewater treatment in  $CO_2$  equivalents (1 000 tonnes =Gg).

# References

Thomsen, M. and Lyck, E. (2005): Emission of CH<sub>4</sub> and N<sub>2</sub>O from Wastewater Treatment plants (6B). Department of Policy Analysis. National Environmental Research Institute DK-4000 Roskilde. <u>http://www2.dmu.dk/1\_viden/2\_Publikationer/3\_arbrapporter/rapporter/AR20</u> 8.pdf

Regeringen 2003. Affaldsstrategi 2005-2008.

# 10 Conclusions

The historic and projected greenhouse gas (GHG) emissions are shown in Tables 10.1 – 10.9 and illustrated in Figure 10.1. Projected GHG emissions include the estimated effects of policies and measures implemented until October 2006, and the projection of total GHG emissions is therefore a so-called 'with measures' projection. The main sectors in 2008-2012 ('2010') are expected to be Energy Industries (39 %), Transport (21 %), Agriculture (14 %), and Other sectors (10 %). For the latter sector the most important sources are fuel use in the residential sector and the agricultural sector (Table 10.1). The GHG emissions show a decreasing trend from 1990 to 2030 and, in general, the emission share for the Energy Industries sector can be seen to be decreasing while the emission share for the Transport sector is increasing. The total emission in '2010' is estimated to be 67,800 ktonnes CO<sub>2</sub> equivalents and 60,386 ktonnes in 2030, corresponding to a decrease of about 10%. From 1990 to '2010', the emissions are estimated to decrease by about 2%. The commitment to a reduction of 21% or a maximum emission of about 55 million tonnes in '2010' under the Kyoto-protocol can be obtained either by national reductions, use of the flexible mechanisms under the Kyoto Protocol or by including CO<sub>2</sub> uptake in forestry and soil.

Calculation of the GHG emissions for the various IPCC categories is described in Chapters 2-9, except for emissions from the use of solvents (6). The projected GHG emissions from the use of solvents are based on the 2004 historic emissions and the conversion factor from NMVOC to carbon is assumed to be 0.85.



Figure 10.1 Total GHG emissions in CO<sub>2</sub> equivalents. Distribution according to main sectors ('2010') and time-series for 1990 to 2030.

# 10.1 Stationary combustion

The GHG emissions in '2010' from the main source, which is public power (57%), are estimated to decrease significantly in the period from 2006 to 2030 due to partial shift in fuel type from coal to wood and mu-

nicipal waste. Also, for residential combustion plants a significant decrease in emissions is seen; the emissions almost halve from 1990 to 2030. The emissions from the other sectors remain almost constant over the period except for energy use in offshore industry (oil and gas extraction), where the emissions are projected to increase by more than 300% from 1990 to '2010' and by almost 60% from '2010' to 2030.



**Figure 10.2** GHG emissions in  $CO_2$  equivalents for stationary combustion. Distribution according to sources ('2010') and time-series for 1990 to 2030 for main sources.

# 10.2 Industrial processes

The GHG emission from industrial processes increased during the nineties, reaching a maximum in 2000. Closure of the nitric acid/fertiliser plant in 2004 has resulted in a considerable decrease in the GHG emission and stabilisation at a level about 1,750 ktonnes  $CO_2$  equivalents. The most significant source is cement production, which contributes with more than 80% of the process-related GHG emission. Most of the processes are assumed to be constant at the same level as in 2004. Consumption of limestone and the emission of  $CO_2$  from flue gas cleaning are assumed to follow the consumption of coal and MSW for generation of heat and power. The GHG emission from this sector will continue to be strongly dependant on cement production.



Figure 10.3 Total GHG emissions in  $CO_2$  equivalents for industrial processes. Distribution according to main sectors ('2010') and time-series for 1990 to 2030.

## 10.3 Transport

Road transport is the main source of GHG emissions in '2010' and emissions from this sector are expected to increase by 59% from 1990 to 2030 due to growth in traffic. The emission shares for the remaining mobile sources are small compared with road transport, and from 1990 to 2030 the total share for these categories reduces from 32 to 20%. For agriculture/forestry/fisheries the emissions are expected to reduce by 27% during the same period due to a shift towards smaller numbers of agricultural tractors and harvesters but with larger engines. For industry (1A2f), the emissions increase by 4% from 1990-2030; for this sector there is an emission growth from 1990-2005 (due to increased activity), followed by a slight emission reduction from 2005-2030 due to machinery gradually becoming more fuel efficient. The latter explanation is also the reason for the small emission declines for Residential (gardening) (1A4b) and Navigation (1A3d) in the forecast period.



**Figure 10.4** GHG emissions in  $CO_2$  equivalents for mobile sources. Distribution according to sources ('2010') and timeseries for 1990 to 2030 for main sources.

# 10.4 Fluorinated gases

Danish regulation concerning the powerful F-gas greenhouse gases includes phasing out of some F-gases and taxation on others. Although the use of SF<sub>6</sub> in double-glazing window panes was in banned in 2002, throughout the period there will still be emission of  $SF_6$  in connection with the disposal of the panes. HFCs are dominant F-gases , and in '2010' are expected to contribute with 78% of the F-gas emission, Figure 10.5.



Figure 10.5 GHG emissions in  $CO_2$  equivalents for F-gases. Distribution according to F-gas type (2010') and time-series for 1990 to 2030 for F-gas type

## 10.5 Agriculture

From 1990 to 2004, the emission of greenhouse gases in the agricultural sector has declined from 13,050 ktonnes CO<sub>2</sub> equivalents to 10,000 ktonnes CO<sub>2</sub> equivalents, which corresponds to a 23% reduction. This development continues, and the emission to 2030 is expected to fall further to 8,690 ktonnes CO<sub>2</sub> equivalents. The reduction both in the historical data and the projection can mainly be explained by improved utilisation of nitrogen in manure and a significant fall in the use of fertiliser and a lower emission from N-leaching. These are consequences of an active environmental policy in this area. Measures in the form of technologies to reduce ammonia emissions in the stable and expansion of biogas production are taken into account in the projections but do not contribute to significant changes in the total greenhouse gas emission.



**Figure 10.6** GHG emissions in CO<sub>2</sub> equivalents for agriculture sources. Distribution according to sources ('2010') and timeseries for 1990 to 2030 for main sources.

# 10.6 Waste (Landfill sites and wastewater treatment)

The target in the government's 2003 'Waste Strategy 2005-2008' ('Af-faldsstrategi 2005-2008') of 9% of waste produced to be deposited at

landfill sites in 2008 has been used in combination with the Risø FRIDA model for amounts of waste coupled with economic growth. The waste strategy target has already been reached (8% in 2004). A slight increase in the amount of waste deposited is now foreseen due to an increase in the amount of waste produced predicted by FRIDA. In the historical data, the amount of waste deposited at landfill decreased; so, after some years with decreasing CH<sub>4</sub> emissions, a slight increase or an almost constant emission level is now foreseen. However, there exists a time-lag between reductions in the amount of waste deposited at landfill and the associated CH<sub>4</sub> emission due to the duration of the biochemical processes involved, which is predicted by the decay model used for the emission estimates. The prediction of the contribution of CH<sub>4</sub> from landfill to the sector total in '2010' is 78%, Figure 10.7.

The predicted emission of  $CH_4$  from wastewater is only 18%. Some increase in the total amount of organic material in wastewater is foreseen, which would result in an increase in  $CH_4$  emissions.

The emission of  $N_2O$  from wastewater is predicted to contribute to the total GHG emission for the sector with 4%. Due to the action plans for the aquatic environment, the  $N_2O$  emission is predicted to remain at an almost constant level.



**Figure 10.7** GHG emissions in  $CO_2$  equivalents for Waste. Distribution according to source Wastewater (WW) and Solid Waste Disposal (SWD) and gas ('2010') and the time-series for 1990 to 2030.

|      | Sektor                                          | 1990  | 1995  | 2000  | 2005  | "2010" | "2015" | 2020  | 2025  | 2030  |
|------|-------------------------------------------------|-------|-------|-------|-------|--------|--------|-------|-------|-------|
| 1A1a | Public power                                    | 22899 | 28755 | 21427 | 13831 | 20970  | 19333  | 15637 | 13513 | 12030 |
| 1A1a | Gas turbines                                    | 110   | 590   | 1397  | 922   | 282    | 577    | 876   | 639   | 692   |
| 1A1a | District heating plants                         | 1852  | 854   | 286   | 1624  | 1779   | 1737   | 1455  | 2043  | 1884  |
| 1A1b | Petroleum refining plants                       | 908   | 1387  | 999   | 1018  | 1018   | 1018   | 1018  | 1018  | 1018  |
| 1A1c | Coal mining, oil / gas extraction, pipeline c   | 546   | 744   | 1467  | 1653  | 2499   | 4026   | 4856  | 4088  | 4088  |
|      |                                                 |       |       |       |       |        |        |       |       |       |
| 1A2  | Combustion in manufacturing industry            | 4639  | 5188  | 5146  | 4762  | 4886   | 4975   | 5023  | 5052  | 5059  |
| 1A2f | Industry - Other (mobile)                       | 853   | 860   | 892   | 925   | 917    | 914    | 895   | 887   | 884   |
|      |                                                 |       |       |       |       |        |        |       |       |       |
| 1A3a | Civil Aviation                                  | 246   | 202   | 157   | 130   | 136    | 144    | 155   | 165   | 176   |
| 1A3b | Road                                            | 9418  | 10798 | 11591 | 12856 | 13320  | 13721  | 14279 | 14641 | 14961 |
| 1A3c | Railways                                        | 300   | 306   | 230   | 204   | 204    | 204    | 204   | 204   | 204   |
| 1A3d | Navigation                                      | 566   | 667   | 472   | 477   | 437    | 426    | 426   | 426   | 426   |
|      |                                                 |       |       |       |       |        |        |       |       |       |
| 1A4a | Commercial and institutional plants (t)         | 1419  | 1139  | 940   | 948   | 887    | 845    | 836   | 828   | 816   |
| 1A4b | Residential plants                              | 5066  | 5132  | 4145  | 4037  | 3365   | 2962   | 2744  | 2618  | 2620  |
| 1A4b | Residential (mobile)                            | 142   | 156   | 174   | 305   | 298    | 294    | 294   | 294   | 294   |
| 1A4c | Plants in agriculture, forestry and aquaculture | 620   | 730   | 779   | 764   | 798    | 819    | 810   | 802   | 806   |
| 1A4c | Ag./for./fish. (mobile)                         | 2112  | 1792  | 1711  | 1645  | 1612   | 1569   | 1553  | 1558  | 1549  |
|      |                                                 |       |       |       |       |        |        |       |       |       |
| 1A5  | Military (mobile)                               | 120   | 256   | 112   | 124   | 124    | 125    | 125   | 125   | 125   |
|      |                                                 |       |       |       |       |        |        |       |       |       |
| 1B2a | Fugitive emissions from oil                     | 32    | 48    | 73    | 78    | 46     | 32     | 30    | 25    | 25    |
| 1B2b | Fugitive emissions from gas                     | 6     | 12    | 5     | 4     | 4      | 3      | 2     | 2     | 2     |
| 1B2c | Fugitive emissions from flaring                 | 267   | 369   | 600   | 459   | 626    | 654    | 654   | 475   | 475   |
|      |                                                 |       |       |       |       |        |        |       |       |       |
| 2A   | Mineral Products                                | 1072  | 1407  | 1640  | 1703  | 1732   | 1727   | 1712  | 1709  | 1704  |
| 2B   | Chemical Industry                               | 1044  | 905   | 1004  | 3     | 3      | 3      | 3     | 3     | 3     |
| 2C   | Metal Production                                | 28    | 39    | 41    | 45    | 45     | 45     | 45    | 45    | 45    |
| 2F   | Consumption of Halocarbons and SF6              | 44    | 326   | 682   | 864   | 900    | 655    | 235   | 235   | 235   |
|      |                                                 |       |       |       |       |        |        |       |       |       |
| 3    | Solvents (2004)                                 | 137   | 123   | 120   | 113   | 113    | 113    | 113   | 113   | 113   |
|      |                                                 |       |       |       |       |        |        |       |       |       |
| 4A   | Enteric Fermentation                            | 3259  | 3169  | 2862  | 2681  | 2582   | 2441   | 2354  | 2275  | 2275  |
| 4B   | Manure Management                               | 1437  | 1509  | 1556  | 1552  | 1544   | 1522   | 1518  | 1513  | 1513  |
| 4D   | Agricultural Soils                              | 8352  | 7305  | 6193  | 5556  | 5317   | 5114   | 4999  | 4900  | 4900  |
|      |                                                 |       |       |       |       |        |        |       |       |       |
| 6A1  | Managed Waste Disposal on Land                  | 1334  | 1286  | 1192  | 1109  | 1078   | 1072   | 1074  | 1077  | 1075  |
| 6B   | Wastewater Handling                             | 213   | 262   | 283   | 314   | 279    | 302    | 331   | 361   | 391   |
|      | Total without LULUCF                            | 69042 | 76314 | 68174 | 60705 | 67800  | 67371  | 64257 | 61634 | 60386 |
|      |                                                 |       |       |       |       |        |        |       |       |       |
| 1A3a | Civil Aviation, international                   | 3149  | 5162  | 4365  | 2279  | 2361   | 2485   | 2701  | 2881  | 3072  |
| 1A3d | Navigation, international                       | 1755  | 1888  | 2376  | 3201  | 3201   | 3201   | 3201  | 3201  | 3201  |

 Table 10.1
 Historic and projected greenhouse gas (GHG) emissions in ktonnes CO<sub>2</sub> equivalents.

# **Table 10.2** Historic and projected $CO_2$ emissions in ktonnes $CO_2$ .

| CO <sub>2</sub> emissions and projections (Gg)           |            | KP Base Year | 1990  | 1995    | 2000   | 2001  | 2002   | 2003       | 2004   | 2005    | 2006   | 2007   | 2008  | 2009   | 2010   | 2011    | 2012  | 2008-12    | 2013-17    | 2020  | 2025  | 2030  |
|----------------------------------------------------------|------------|--------------|-------|---------|--------|-------|--------|------------|--------|---------|--------|--------|-------|--------|--------|---------|-------|------------|------------|-------|-------|-------|
| Denmark's Total Emissions excluding net CO2 and N2O from | LULUCF     | 52712        | 52712 | 60450   | 53070  | 54669 | 54262  | 59454      | 53941  | 47110   | 57990  | 57154  | 57744 | 56331  | 51 991 | 53396   | 53895 | 54672      | 54853      | 52210 | 49825 | 48528 |
| 1. Energy                                                |            | 51474        | 51474 | 58880   | 5126 5 | 52847 | 52457  | 57772      | 52094  | 4 52 46 | 56089  | 552 52 | 55840 | 54432  | 50106  | 51 50 9 | 52005 | 5 52778    | 52965      | 50336 | 47955 | 46663 |
| A Fuel Combustion Activities (Sectoral Approach)         |            | 51211        | 51211 | 58 51 5 | 50671  | 52213 | 51921  | 57 222     | 51485  | 44789   | 55573  | 54692  | 55281 | 538 58 | 49441  | 50845   | 51355 | 5 52156    | 52314      | 49686 | 47483 | 46191 |
| 1 Energy Industries                                      |            | 26173        | 26173 | 31934   | 25115  | 26400 | 26 553 | 31402      | 25388  | 18561   | 29392  | 28578  | 29204 | 27821  | 23476  | 24887   | 25425 | 5 26162    | 26328      | 23383 | 20957 | 19372 |
| a Public Electricity and Heat Production                 |            | 24736        | 24736 | 29828   | 22678  | 23972 | 24060  | 28869      | 22832  | 15923   | 26493  | 25584  | 26158 | 24727  | 20240  | 21041   | 21276 | 22688      | 21347      | 17581 | 15914 | 14329 |
| b Petroleum Refining                                     |            | 897          | 897   | 1371    | 988    | 1009  | 971    | 1013       | 988    | 1006    | 1006   | 1006   | 1006  | 1006   | 1006   | 1006    | 1006  | 6 1006     | 1006       | 1006  | 1006  | 1006  |
| c Manufacture of Solid Fuels and Other Energy Industries |            | 540          | 540   | 735     | 1449   | 1419  | 1522   | 1520       | 1567   | 1632    | 1893   | 1988   | 2040  | 2087   | 2230   | 2840    | 3143  | 3 2468     | 3976       | 4796  | 4037  | 4037  |
| 2 Manufacturing Industries and Construction              |            | 5423         | 5423  | 5974    | 5946   | 6018  | 5700   | 5698       | 5841   | 5585    | 5535   | 5554   | 5595  | 5656   | 57 28  | 57 53   | 5767  | 5700       | 5784       | 5813  | 5834  | 5839  |
| a Iron and Steel                                         |            | 326          | 326   | 282     | 330    | 342   | 408    | 408        | 401    | 401     | 401    | 401    | 401   | 401    | 401    | 401     | 401   | 401        | 401        | 401   | 401   | 401   |
| b Non-Ferrous Metals                                     |            | 12           | 12    | 17      | 14     | 16    | 14     | 14         | 14     | 14      | 14     | 14     | 14    | 14     | 14     | 14      | 14    | 14         | 14         | 14    | 14    | 14    |
| c Chemicals                                              |            | 379          | 379   | 437     | 476    | 509   | 458    | 458        | 461    | 461     | 461    | 461    | 461   | 461    | 461    | 461     | 461   | 461        | 461        | 461   | 461   | 461   |
| d Pulp, Paper and Print                                  |            | 366          | 366   | 222     | 236    | 250   | 224    | 224        | 220    | 220     | 220    | 220    | 220   | 220    | 220    | 220     | 220   | 220        | 220        | 220   | 220   | 220   |
| e Food Processing, Beverages and Tobacco                 |            | 1679         | 1679  | 1888    | 1718   | 1712  | 1574   | 1575       | 1606   | 1606    | 1606   | 1606   | 1606  | 1606   | 1606   | 1606    | 1606  | 6 1606     | 1606       | 1606  | 1606  | 1606  |
| f Other (please specify:)                                | (1), (2)   | 2662         | 2662  | 3128    | 3174   | 3189  | 3023   | 3019       | 3139   | 2884    | 2833   | 2852   | 2893  | 2954   | 3027   | 3052    | 3065  | 2998       | 3083       | 3111  | 3133  | 3137  |
| 3 T ransport                                             |            | 10336        | 10336 | 11639   | 12004  | 11992 | 12 170 | 12605      | 128 59 | 13136   | 133 58 | 13461  | 13516 | 13516  | 134 56 | 13 533  | 13618 | 13 528     | 13911      | 14457 | 14805 | 15118 |
| a Civil Aviation                                         |            | 243          | 243   | 199     | 154    | 161   | 140    | 137        | 128    | 128     | 130    | 131    | 133   | 133    | 133    | 133     | 135   | 5 133      | 141        | 152   | 162   | 172   |
| b Road Transportation                                    |            | 9241         | 9241  | 10483   | 11159  | 11163 | 112/9  | 11/22      | 12024  | 12338   | 12559  | 12668  | 12/32 | 12/45  | 12/02  | 12//9   | 12863 | 3 12/64    | 13150      | 13685 | 14023 | 14327 |
| d Novigation                                             |            | 297          | 297   | 503     | 220    | 211   | 210    | £10<br>527 | 210    | 202     | 202    | 202    | 202   | 202    | 202    | 202     | 202   | 202        | 202        | 202   | 202   | 202   |
| 4 Other Sectors                                          |            | 9159         | 91 59 | 8716    | 7496   | 7707  | 7409   | 7426       | 7159   | 7385    | 7167   | 6978   | 6844  | 6743   | 420    | 6 549   | 6424  | 6644       | 6168       | 5911  | 5765  | 5740  |
| a Commercial/Institutional                               |            | 1403         | 1403  | 1116    | 913    | 884   | 895    | 969        | 956    | 915     | 905    | 892    | 879   | 868    | 859    | 845     | 830   | 856        | 815        | 806   | 798   | 787   |
| b Residential                                            |            | 5084         | 5084  | 5141    | 4173   | 4403  | 4179   | 4176       | 4065   | 4141    | 3963   | 3782   | 3653  | 3551   | 3460   | 3370    | 3263  | 3459       | 3047       | 2821  | 2687  | 2679  |
| c Agriculture/Forestrv/Fisheries                         |            | 2673         | 2673  | 2459    | 2410   | 2420  | 2336   | 2281       | 2138   | 2328    | 2298   | 2304   | 2312  | 2324   | 2340   | 2335    | 2331  | 2328       | 2306       | 2283  | 2280  | 2274  |
| 5 Other (please specify:)                                | (3)        | 119          | 119   | 2 52    | 111    | 97    | 89     | 92         | 239    | 122     | 122    | 122    | 122   | 122    | 122    | 122     | 122   | 122        | 122        | 122   | 122   | 122   |
| B Fugitive Emissions from Fuels                          |            | 263          | 263   | 365     | 594    | 633   | 535    | 550        | 608    | 4 56    | 516    | 560    | 560   | 574    | 665    | 664     | 6 50  | 622        | 6 50       | 6 50  | 472   | 472   |
| 1 Solid Fuels                                            | NA, NO     | 0            | 0     | 0       | 0      | 0     | 0      | 0          | 0      | 0       | 0      | 0      | 0     | 0      | 0      | 0       | 0     | 0          | 0          | 0     | 0     | 0     |
| 2 Oil and Natural Gas                                    |            | 263          | 263   | 365     | 594    | 633   | 535    | 550        | 608    | 4 56    | 516    | 560    | 560   | 574    | 665    | 664     | 6 50  | 622        | 6 50       | 6 50  | 472   | 472   |
| a Oil                                                    | NA         |              |       |         |        |       |        |            |        |         |        |        |       |        |        |         |       |            |            |       |       |       |
| b Natural Gas                                            | NA,NO      |              |       |         |        |       |        |            |        |         |        |        |       |        |        |         |       |            |            |       |       |       |
| c Venting and Flaring                                    |            | 263          | 263   | 365     | 594    | 633   | 535    | 550        | 608    | 456     | 516    | 560    | 560   | 574    | 665    | 664     | 650   | 622        | 650        | 650   | 472   | 472   |
| Flaring                                                  |            | 263          | 263   | 365     | 594    | 633   | 535    | 550        | 608    | 456     | 516    | 560    | 560   | 574    | 665    | 664     | 650   | 622        | 650        | 650   | 472   | 472   |
| 2. In dust nal Processes                                 |            | 1101         | 1101  | 1446    | 1682   | 1708  | 1697   | 15/2       | 1/31   | 17 51   | 1788   | 1/88   | 1/91  | 1/86   | 1//2   | 1//4    | 1776  | 1/80       | 1//5       | 1760  | 1/5/  | 1/52  |
| A Mineral Products                                       |            | 1072         | 1072  | 1407    | 1640   | 1660  | 1696   | 1571       | 1728   | 1703    | 1740   | 1740   | 1743  | 1738   | 1724   | 1726    | 1728  | 1732       | 1727       | 1712  | 1709  | 1704  |
| 1 Cement Production                                      |            | 882          | 882   | 1204    | 1406   | 1432  | 1452   | 1370       | 1539   | 1539    | 1539   | 1539   | 1539  | 1539   | 1539   | 1539    | 1539  | 1539       | 1539       | 1539  | 1539  | 1539  |
| 2 Line Production 3 Limestone and Delemite Use           |            | 102          | 102   | 132     | 123    | 119   | 141    | 74         | 110    | 20      | 75     | 76     | 70    | 74     | 110    | 60      | 110   |            | 60         | 110   | 110   | 20    |
| 5 Asphalt Roofing                                        | ( < 0.5)   | 18           | 10    | 55      | 94     | 92    | 00     | /4         | 04     | 39      | /5     | /0     | /0    | /4     | 00     | 02      | 04    |            | 02         | 40    | 44    | 39    |
| 6 Pood Poving with Asphalt                               | (< 0.5)    | 0            | 2     | 2       | 2      | 2     | 2      | 2          | 2      | 2       | 2      | 2      | 2     | 2      | 2      | 2       | 2     |            |            | 2     | 2     | 2     |
| 7 Other (please specify )                                | (4)        | 17           | 17    | 14      | 16     | 16    | 16     | 12         | 12     | 12      | 12     | 12     | 12    | 12     | 12     | 12      | 12    | 12         | 12         | 12    | 12    | 12    |
| R Chemical Inductory                                     | (4)        | 1            | 17    | 14      | 10     | 10    | 10     | 10         | 10     | 2       | 13     | 2      | 13    | 13     | 13     | 13      | 2     | 2 13       | 2 13       | 2     | 13    | 10    |
| 2 Nitria Aaid Broduction                                 |            |              |       |         |        |       |        |            |        |         |        |        | J     | ,<br>, | J      |         |       | <u> </u>   |            | ,     |       |       |
| 5 Other (please specify )                                | (E)        | 1            | 1     | 1       | 1      | 1     | 1      | 1          | 3      | 3       | 3      | 3      | 3     | 3      | 3      | 3       | 3     | 1 3        | 3          | 3     | 3     | 3     |
| C Metal Production                                       | (5)        | 28           | 28    | 39      | 41     | 47    |        |            | 0      | 45      | 45     | 45     | 45    | 45     | 45     | 45      | 45    | 45         | 45         | 45    | 45    | 4 5   |
| 1 Iron and Steel Production                              | 2002 4: NO | 20           | 20    | 30      | 41     | 47    | 0      | 0          | 0      | 45      | 45     | 45     | 45    | 45     | 45     | 45      | 45    | 45         | 45         | 45    | 45    | 45    |
| 4 SF6 Used in Aluminium and Magnesium Foundries          | 2002/4.110 | 20           | 20    | 33      |        | +/    |        | 0          |        | +5      | +5     | +3     | 45    | +5     | +3     |         | +3    | +5         | +5         | +5    | +5    | +5    |
| SF. Used in Magnesium Foundries                          |            |              |       |         |        |       |        |            |        |         |        |        |       |        |        |         |       |            |            |       |       |       |
| D. Other Production                                      | NE         |              |       |         |        |       |        |            |        |         |        |        |       |        |        |         |       |            |            |       |       |       |
| E. Production of Halocarbons and Sulphur Hevaflue ride   | INC        |              |       |         |        |       |        |            |        |         |        |        |       |        |        |         |       |            |            |       |       | -     |
| F Consumption of Halocarbons and Sulphur Hexafluo ride   |            |              |       |         |        |       |        |            |        |         |        |        |       |        |        |         |       |            |            |       |       |       |
| 1 Refrigeration and Air Conditioning Equipment           |            |              |       |         |        |       |        |            |        |         |        |        |       |        |        |         | _     |            |            |       |       |       |
| 2. Foam Blowing                                          |            |              |       |         |        |       |        |            |        |         |        |        |       |        |        |         |       |            |            |       |       |       |
| 3 Fire Extinguishers                                     |            |              |       |         |        |       |        |            |        |         |        |        |       |        |        |         |       |            |            |       |       |       |
| 4. Aerosols/ Metered Dose Inhalers                       |            |              |       |         |        |       |        |            |        |         |        |        |       |        |        |         |       |            |            |       |       |       |
| 8 Electrical Equipment (SEc)                             |            |              |       |         |        |       |        |            |        |         |        |        |       |        |        |         |       |            |            |       |       |       |
| 9. Other (please specify: see below)                     |            |              |       |         |        |       |        |            |        |         |        |        |       |        |        |         |       |            |            |       |       |       |
| C.F. ( )                                                 | (6)        |              |       |         |        |       |        |            |        |         |        |        |       |        |        |         | _     |            | 1          |       |       |       |
| C34 § ()                                                 | (0)        |              |       |         |        |       |        |            |        |         |        |        |       |        |        |         |       | -          |            |       |       |       |
| $SF_6()$                                                 | (7)        |              |       |         |        |       |        |            |        |         |        |        |       |        |        |         |       |            |            |       |       |       |
| Conter (please specify)                                  | NA         | 407          | 4.0-  | 4.00    | 40.0   | 440   | 400    | 40-        | 440    | 440     |        | 4/2    | 445   | 440    | 440    | 440     | 4/2   | 440        | 4/2        | 4/2   | 440   | 4/2   |
| 3. Solvent and Other Product Use                         |            | 137          | 137   | 123     | 120    | 113   | 106    | 107        | 113    | 113     | 113    | 113    | 113   | 113    | 113    | 113     | 113   | 113        | 113        | 113   | 113   | 113   |
| A Paint Application<br>P. Degracing and Dry Cleaning     |            | 24           | 24    | 20      | 20     | 18    | 17     | 19         | 21     | 21      | 21     | 21     | 21    | 21     | 21     | 21      | 21    | 21         | 21         | 21    | 21    | 21    |
| C Chamical Braduate Manufacture and Bradassing           |            | 46           | 46    | 38      | 3/     | 34    | 30     | 28         | 2/     | 2/      | 2/     | 2/     | 2/    | 2/     | 2/     | 2/      | 2/    | 2/         | 2/         | 2/    | 2/    | 2/    |
| C Chemical Products, Manufacture and Processing          |            | 3            | 3     | 2       | 3      | 2     | 2      | - 2        | 2      | 2       | . 2    | 2      | 2     | 2      | 2      | 2       | 2     | <u> </u> 2 | <u> </u> 2 | 2     | 2     | 2     |
| D Other (please specify: )                               | (8)        | 64           | 64    | 64      | 60     | 59    | 56     | 58         | 63     | 63      | 63     | 63     | 63    | 63     | 63     | 63      | 63    | 63         | 63         | 63    | 63    | 63    |
| 1. Use of N2O for Anaesthesia                            |            |              |       |         |        |       |        | _          |        |         |        |        |       |        |        |         |       |            |            |       |       |       |
| 2. N2O from Fire Extinguishers                           |            |              |       |         |        |       |        |            |        |         |        |        |       |        |        |         |       |            |            |       |       |       |
| 5. N2O from Aerosol Cans                                 |            |              |       |         |        |       |        |            |        | -       |        |        |       |        |        |         |       |            |            |       |       |       |
| 5. Other (as specified in table 3 A=D)                   |            | 64           | 64    | 64      | 03     | 50    | 56     | 58         | 63     | 63      | 63     | 63     | 63    | 63     | 63     | 63      | 63    | 63         | 63         | 63    | 63    | 63    |
| 5. Other (as specified in table 5.A-D)                   |            | 04           | 04    | 04      | 00     | . 33  | 50     | 50         | 03     | 03      | 03     | 00     | 03    | 03     | 03     | 03      | 03    | 1 00       | 1 00       | 03    | 03    | 00    |

| CO <sub>2</sub> emissions and projections (Gg)                                    |      | KP Base Year | 1990 | 1995 | 2000 | 2001 | 2002  | 2003  | 2004  | 2005 | 2006  | 2007  | 2008  | 2009  | 2010  | 2011  | 2012  | 2008-12 | 2013-17 | 2020  | 2025     | 2030    |
|-----------------------------------------------------------------------------------|------|--------------|------|------|------|------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|---------|---------|-------|----------|---------|
| 4. A g ricult u re                                                                |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| A Enteric Fermentation                                                            |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 1 Cattle                                                                          |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| Option A: Dairy Cattle                                                            |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| Non-Dairy Cattle                                                                  |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 2 Buffalo                                                                         |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 3 Sheep                                                                           |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 4 Goats                                                                           |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 5 Camels and Llamas                                                               |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 6 Horses                                                                          |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 7 Mules and Asses                                                                 |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 8 Swine                                                                           |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 9 Poultry                                                                         |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 10 Other (please specify)                                                         |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| B Manure Management                                                               |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 1 Cattle                                                                          |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| Option A: Dairy Cattle                                                            |      |              | _    |      |      |      |       | _     |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| Non-Dairy Cattle                                                                  |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 2 Buttalo                                                                         |      |              |      |      |      |      |       |       |       |      |       | -     |       |       |       |       |       |         |         |       |          |         |
| 3 Sheep                                                                           |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 4 Uolis                                                                           |      |              | -    |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 5 Camels and Llamas                                                               |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 7 Mulas and Assa                                                                  |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 7 Mules and Asses                                                                 |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 8 Swille                                                                          |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| <ol> <li>Fouldy</li> <li>Other livesteek (place specific): Fur ferming</li> </ol> |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 10 Other investock (prease specify). Fur farming                                  |      |              | -    |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 12 Liquid Systems                                                                 |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 12 Englid Systems                                                                 |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 14 Other AWMS                                                                     |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| C Rice Cultivation                                                                |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| D Agricultural Soils                                                              |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 1. Direct Soil Emissions                                                          |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 2. Pasture, Range and Paddock Manure                                              |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 3. Indirect Emissions                                                             |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| <ol><li>Other (please specify: see below)</li></ol>                               |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| Industrial waste used as fertilizer                                               |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| Use of sewage slugde as fertilizer                                                |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| E Prescribed Burning of Savannas                                                  |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| F Field Burning of Agricultural Residues (1)                                      |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| G Other (please specify)                                                          |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 6. Waste                                                                          |      | 0            | 0    | 0    | 3    | 2    | 3     | 3     | 2     | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0       | 0       | 0     | 0        | 0       |
| A Solid Waste Disposal on Land                                                    |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 1 Managed Waste Disposal on Land                                                  | NE   |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| B Wastewater Handling                                                             |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| 2 Domestic and Commercial Wastewater                                              |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| C Waste Incineration                                                              | IE   |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       | 0       | 0       | 0     | 0        | 0       |
| D Other (please specify:)                                                         | (9)  | 0            | 0    | 0    | 3    | 2    | 3     | 3     | 2     | 0    | 0     | 0     |       |       |       |       |       | 0       | 0       | 0     | 0        | 0       |
| 7. Other (please specify)                                                         | NA   |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| Memo Items (not included above):                                                  |      |              |      |      |      |      |       |       |       | 1    |       |       |       |       |       |       |       |         |         |       |          |         |
| International Bunkers                                                             |      | 4823         | 4823 | 6928 | 6629 | 5990 | 5025  | 5272  | 4992  | 5392 | 54 29 | 5462  | 5478  | 5481  | 5471  | 5455  | 5479  | 5473    | 5595    | 5810  | 5987     | 6176    |
| Aviation                                                                          |      | 1736         | 1736 | 1867 | 2350 | 2385 | 2059  | 2142  | 2447  | 2254 | 2290  | 2324  | 2340  | 2343  | 2333  | 2317  | 2341  | 2335    | 2457    | 2672  | 2849     | 3038    |
| Marine                                                                            |      | 3087         | 3087 | 5061 | 4279 | 3605 | 2966  | 3130  | 2545  | 3138 | 3138  | 3138  | 3138  | 3138  | 3138  | 3138  | 3138  | 3138    | 3138    | 3138  | 3138     | 3138    |
| Multilateral Operations                                                           | NO   |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| CO2 Emissions from Biomass                                                        |      | 4641         | 4641 | 5869 | 7090 | 7696 | 8199  | 9114  | 9647  |      |       |       |       |       |       |       |       |         |         |       |          |         |
| Competions (not included above):                                                  |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |       |         |         |       |          |         |
| CO2 emissions related to Not Flort ricity Import                                  | (10) | 6200         | 6200 | 600  | 650  | 275  | -1609 | 6960  | -2240 | 1140 | 6106  | 5000  | 6740  | 5400  | -1001 | 2097  | 2424  | 4150    | 4000    | -2004 | 2650     | - 2E 4G |
| CO2 emissions related to Temporatum                                               | (11) | 1769         | 1769 | -090 | 1120 | -075 | 791   | -0009 | -2240 | 1140 | -0100 | -5009 | -0749 | -0490 | -1391 | -5007 | -0434 | -+132   | -+020   | -2001 | -2030    | -2340   |
| CO2 chassions related to 1 chiperature                                            | (11) | 1700         | 1700 | 200  | 1120 | 20   | 721   | 004   | 401   | 424  | L     | 1     |       |       |       | L     | L     | L       | L       | I     | <u> </u> | 1       |

... (7): Window plate production, Research laboratories and Running shoes ... (8): Other Products, Manufacture and Processing such as vessels, vehicles, machinery, wood, food and graphic ... (9): Gasfication of biogas ... (10): minus means Net Electricity Export ... (11): temperature deviation from a normal year based on degree days NC: Not occurring / NE: Not estimated / NA: Not applicable / IE: Included elsewhere

Notes: ...(1): Boilers, gas turbines, stationary engines ...(2): Industry mobile sources and machinery ...(3): Military mobile combustion of fuels ...(4): Glass Production ...(5): CatalystiFertilizers, Pesticides and Sulphuric acid ...(6): PFC used as detergent

| CH4 emissions and projections (Gg CO2 equi                                 | valents)        | KP Base Year | 1990  | 1995  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007     | 2008  | 2009  | 2010  | 2011  | 2012  | 2008-12 | 2013-17                                 | 2020  | 2025  | 2030       |
|----------------------------------------------------------------------------|-----------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|---------|-----------------------------------------|-------|-------|------------|
| Denmark's Total Emissions excluding net CO2 and N2O from                   | LULUCF          | 5692         | 5692  | 6025  | 5880  | 6026  | 5985  | 5966  | 5765  | 5783  | 5770  | 5568     | 5515  | 5478  | 5513  | 5457  | 5334  | 5459    | 5265                                    | 5297  | 5157  | 5187       |
| 1. Energy                                                                  |                 | 222          | 222   | 5 26  | 654   | 686   | 682   | 682   | 687   | 74 0  | 711   | 5 65     | 566   | 5 64  | 613   | 617   | 5 2 2 | 576     | 514                                     | 597   | 498   | 500        |
| A Fuel Combustion Activities (Sectoral Approach)                           |                 | 182          | 182   | 4 64  | 574   | 606   | 5 99  | 598   | 5 85  | 65 8  | 633   | 4 88     | 4 94  | 4 94  | 579   | 582   | 4 86  | 527     | 479                                     | 565   | 471   | 473        |
| 1 Energy Industries                                                        |                 | 23           | 23    | 242   | 312   | 337   | 336   | 330   | 323   | 34 6  | 322   | 181      | 188   | 1 90  | 276   | 282   | 187   | 225     | 186                                     | 275   | 177   | 173        |
| a Public Electricity and Heat Production                                   |                 | 22           | 22    | 240   | 310   | 336   | 335   | 329   | 321   | 344   | 320   | 179      | 186   | 188   | 274   | 279   | 185   | 222     | 182                                     | 271   | 174   | 170        |
| b Petroleum Refining                                                       |                 | 1            | 1     | 1     | 0     | 0     | 0     | 0     | 0     | 1     | 1     | 1        | 1     | 1     | 1     | 1     | 1     | 1       | 1                                       | 1     | 1     | 1          |
| <ul> <li>Manufacture of Solid Fuels and Other Energy Industries</li> </ul> |                 | 0            | 0     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1        | 1     | 1     | 2     | 2     | 2     | 2       | 3                                       | 3     | 3     | 3          |
| 2 Manufacturing Industries and Construction                                |                 | 15           | 15    | 18    | 32    | 34    | 31    | 31    | 32    | 40    | 40    | 40       | 40    | 40    | 41    | 41    | 41    | 41      | 41                                      | 41    | 41    | 40         |
| a Iron and Steel                                                           |                 | 1            | 1     | 1     | 3     | 3     | 3     | 3     | 3     | 3     | 3     | 3        | 3     | 3     | 3     | 3     | 3     | 3       | 3                                       | 3     | 3     | 3          |
| b Non-Ferrous Metals                                                       |                 | 0            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0       | 0                                       | 0     | 0     | 0          |
| c Chemicals                                                                |                 | 0            | 0     | 0     | 0     | 1     | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0       | 0                                       | 0     | 0     | 0          |
| d Pulp, Paper and Print                                                    |                 | 1            | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0       | 0                                       | 0     | 0     | 0          |
| e Food Processing, Beverages and Tobacco                                   |                 | 3            | 3     | 4     | 13    | 15    | 13    | 13    | 14    | 14    | 14    | 14       | . 14  | 14    | 14    | 14    | 14    | 14      | 14                                      | 14    | 14    | 14         |
| f Other (please specify:)                                                  | (1), (2)        | 10           | 10    | 12    | 15    | 15    | 13    | 13    | 14    | 22    | 22    | 22       | 22    | 23    | 23    | 23    | 24    | 23      | 23                                      | 23    | 23    | 23         |
| 3 Transport                                                                |                 | 53           | 53    | /5    | 69    | 68    | 62    | 60    | 54    | 63    | 61    | 58       | 54    | 51    | 46    | 43    | 40    | 4/      | 32                                      | 24    | 21    | 21         |
| a Civil Aviation                                                           |                 | 0            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0       | 0                                       | 0     | 0     | 0          |
| b Road Transportation                                                      |                 | 52           | 52    | /3    | 68    | 67    | 61    | 59    | 53    | 62    | 60    | 5/       | 53    | 50    | 46    | 42    | 39    | 46      | 31                                      | 23    | 21    | 20         |
| c Railways                                                                 |                 | 0            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1        | 0     | 0     | 0     | 0     | 0     | 0       | 0                                       | 1     | 0     | 1          |
| 4 Other Sectors                                                            |                 | 91           | 91    | 130   | 161   | 167   | 170   | 177   | 176   | 21.0  | 21.0  | 200      | 211   | 213   | 215   | 216   | 217   | 21.4    | 220                                     | 225   | 23.2  | 220        |
| a Commercial/Institutional                                                 |                 | 4            | 4     | 13    | 10    | 107   | 19    | 19    | 10    | 210   | 210   | 203      | 21    | 213   | 213   | 210   | 20    | 214     | 20                                      | 20    | 202   | 19         |
| h Residential                                                              |                 | 68           | 68    | 80    | 95    | 104   | 103   | 112   | 112   | 140   | 141   | 140      | 141   | 144   | 146   | 147   | 148   | 145     | 152                                     | 158   | 165   | 173        |
| c Agriculture/Forestry/Fisheries                                           |                 | 20           | 20    | 28    | 47    | 44    | 47    | 45    | 45    | 48    | 48    | 48       | 48    | 48    | 49    | 49    | 49    | 48      | 48                                      | 47    | 47    | 47         |
| 5 Other (please specify:)                                                  | (3)             | 0,104        | 0,104 | 0,306 | 0,106 | 0,115 | 0.087 | 0,094 | 0,225 | 0,115 | 0,112 | 0,107    | 0,103 | 0,100 | 0,096 | 0,093 | 0,091 | 0,097   | 0,085                                   | 0,079 | 0,077 | 0,077      |
| B Fu gitive Emissions from Fuels                                           |                 | 40           | 40    | 62    | 80    | 80    | 83    | 84    | 102   | 81    | 78    | 77       | 72    | 70    | 35    | 35    | 36    | 50      | 35                                      | 32    | 27    | 27         |
| 1 Solid Fuels                                                              | NA, NO          | 0            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0       | 0                                       | 0     | 0     | 0          |
| 2 Oil and Natural Gas                                                      |                 | 40           | 40    | 62    | 80    | 80    | 83    | 84    | 102   | 81    | 78    | 77       | 72    | 70    | 35    | 35    | 36    | 50      | 35                                      | 32    | 27    | 27         |
| a Oil                                                                      | NA              | 32           | 32    | 48    | 73    | 72    | 76    | 78    | 93    | 78    | 75    | 73       | 68    | 66    | 31    | 31    | 32    | 46      | 32                                      | 30    | 25    | 25         |
| b Natural Gas                                                              | NA,NO           | 6            | 6     | 12    | 5     | 6     | 4     | 4     | 7     | 4     | 4     | 4        | 4     | 4     | 4     | 3     | 3     | 4       | 3                                       | 2     | 2     | 2          |
| c Venting and Flaring                                                      |                 | 2            | 2     | 2     | 2     | 2     | 3     | 2     | 2     | 0     | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0       | 0                                       | 0     | 0     | 0          |
| Flaring                                                                    |                 | 2            | 2     | 2     | 2     | 2     | 3     | 2     | 2     | 0     | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0       | 0                                       | 0     | 0     | 0          |
| 2. In dustrial Processes                                                   |                 | 0            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0       | 0                                       | 0     | 0     |            |
| A Mineral Products                                                         |                 | 0            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0       | 0                                       | 0     | 0     | ↓ <u> </u> |
| 1 Cement Production                                                        |                 |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       | <u> </u>   |
| 2 Lime Production 2 Limestana and Delamita Usa                             |                 |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       | <b> </b>   |
| 5 Asphalt Reafing                                                          |                 |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       | l          |
| 6 Road Baying with Arphalt                                                 |                 |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       | <u> </u>   |
| 7 Other (plance specify: )                                                 | (4) IE          | 0            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0       | 0                                       | 0     |       |            |
| P Chamical Industry                                                        | (4), 1          | 0            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |          | 0     | 0     | 0     | 0     | 0     | 0       | 0                                       | 0     |       |            |
| 2 Nitrie Acid Broduction                                                   |                 | ,<br>,       |       |       | J     | v     |       |       | , v   |       |       |          | v     |       | •     | 0     |       | •       |                                         |       |       | ľ          |
| 5 Other (please specify: )                                                 | (5) NA          | 0            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0       | 0                                       | 0     | 0     | 0          |
| C Metal Production                                                         | (3), NA         | ő            | Ő     | ŏ     | ő     | Ő     | ŏ     | ŏ     | ŏ     | 0     | ő     | Ö        | Ő     | 0     | 0     | 0     | Ő     | 0       | 0                                       | 0     | 0     | Ĭ          |
| 1 Iron and Steel Production                                                | 2002-4: NA NO   | 0            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |          | 0     | 0     | 0     | 0     | 0     | 0       | 0                                       | 0     | 0     | 0          |
| 4 SE6 Used in Aluminium and Magnesium Foundries                            | 2002 4. 144,140 | Ŭ            |       | Ŭ     |       |       | Ŭ     |       | Ŭ     |       | 0     | ľ        | Ŭ     | Ű     | Ŭ     | 0     | 0     | 0       | , i i i i i i i i i i i i i i i i i i i | 0     |       | <u> </u>   |
| SE-Used in Magnesium Foundries                                             |                 |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       | <u> </u>   |
| D. Other Production                                                        |                 |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       | <u> </u>   |
| E Production of Halocarbons and Sulphur Hexafluoride                       |                 |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       | 1          |
| E. Consumption of Halocarbons and Sulphur Hexafluoride                     |                 |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       |            |
| Refrigeration and Air Conditioning Equipment                               |                 |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       |            |
| 2 Foam Blowing                                                             |                 |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       |            |
| 3 Fire Extinguishers                                                       |                 |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       |            |
| 4. Aerosols/ Metered Dose Inhalers                                         |                 |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       |            |
| 8. Electrical Equipment (SE.)                                              |                 |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       |            |
| 9 Other (please specify: see below)                                        |                 |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       |            |
| C-F <sub>e</sub> ()                                                        | (6)             |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       |            |
| SE())                                                                      | (7)             |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       |            |
| G. Other (nlease specify)                                                  | (/)             | 0            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0        |       |       |       |       |       | 0       | 0                                       | 0     |       | <u> </u>   |
| 3 Solvent and Other Product Use                                            | 11/5            |              | -     |       |       |       |       |       |       | ⊢ – ľ |       | <u> </u> |       |       |       |       |       |         |                                         |       |       | <b>—</b>   |
| A Paint Application                                                        |                 |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       |            |
| B Degreasing and Dry Cleaning                                              |                 |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       |            |
| C Chemical Products, Manufacture and Processing                            |                 |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       |            |
| D Other (please specify: )                                                 | (8)             |              |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |         |                                         |       |       | [          |

| Image: product in the image: produ                        | CH4 emissions and projections (Gg CO2 equi          | valents)         | KP Base Year            | 1990        | 1995         | 2000         | 2001       | 2002         | 2003       | 2004   | 2005   | 2006    | 2007 | 2008 | 2009 | 2010   | 2011 | 2012  | 2008-12 | 2013-17 | 2020   | 2025 | 2030 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------|-------------------------|-------------|--------------|--------------|------------|--------------|------------|--------|--------|---------|------|------|------|--------|------|-------|---------|---------|--------|------|------|
| Altern frameword       Image of the set of the                                  | 4. A gricultu re                                    |                  | 4011                    | 4 01 1      | 4036         | 3816         | 3921       | 3861         | 3821       | 3740   | 3681   | 3719    | 3680 | 3640 | 3622 | 3612   | 3547 | 3516  | 3587    | 3438    | 3 35 6 | 3282 | 3282 |
| I alt       Alton       Alton <t< td=""><td>A Enteric Fermentation</td><td></td><td>325 9</td><td>3 25 9</td><td>31 69</td><td>2862</td><td>2920</td><td>2844</td><td>2801</td><td>2711</td><td>2681</td><td>2706</td><td>2671</td><td>2636</td><td>2615</td><td>2589</td><td>2550</td><td>25 21</td><td>2582</td><td>2441</td><td>2354</td><td>2275</td><td>2275</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A Enteric Fermentation                              |                  | 325 9                   | 3 25 9      | 31 69        | 2862         | 2920       | 2844         | 2801       | 2711   | 2681   | 2706    | 2671 | 2636 | 2615 | 2589   | 2550 | 25 21 | 2582    | 2441    | 2354   | 2275 | 2275 |
| Invo A inor Colu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 Cattle                                            |                  | 2950                    | 2950        | 2823         | 2484         | 2525       | 2448         | 2400       | 2305   |        |         |      |      |      |        |      |       |         |         |        |      |      |
| No long (no.)       No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Option A: Dairy Cattle                              |                  | 1844                    | 1844        | 1792         | 1564         | 1562       | 1555         | 1554       | 1493   |        |         |      |      |      |        |      |       |         |         |        |      |      |
| Implicit       Implicit <t< td=""><td>Non-Dairy Cattle</td><td></td><td>1106</td><td>1106</td><td>1031</td><td>920</td><td>963</td><td>893</td><td>846</td><td>812</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Non-Dairy Cattle                                    |                  | 1106                    | 1106        | 1031         | 920          | 963        | 893          | 846        | 812    |        |         |      |      |      |        |      |       |         |         |        |      |      |
| 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 Buffalo                                           | NO               |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| Definition of the second sec | 3 Sheep                                             |                  | 33                      | 33          | 29           | 29           | 33         | 27           | 30         | 29     |        |         |      |      |      |        |      |       |         |         |        |      |      |
| S         Decomponent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 Goats                                             |                  | 2                       | 2           | 3            | 3            | 3          | 3            | 3          | 3      |        |         |      |      |      |        |      |       |         |         |        |      |      |
| Important                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 Camels and Llamas                                 | NO               |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| Definition of the set of | 6 Horses                                            |                  | 60                      | 60          | 64           | 67           | 68         | 69           | 69         | 69     |        |         |      |      |      |        |      |       |         |         |        |      |      |
| s brain         image         image <td>7 Mules and Asses</td> <td>NO</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 Mules and Asses                                   | NO               |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 Swine                                             |                  | 213                     | 213         | 250          | 278          | 291        | 297          | 299        | 304    |        |         |      |      |      |        |      |       |         |         |        |      |      |
| Intervise gent for tanged       16       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 Poultry                                           | NE               |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| IMM       Matrix       Total       Total       State       State <tt>State       State</tt>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 Other (please specify: Fur farming)              | NE               | 0                       | 0           | 0            | 0            | 0          | 0            | 0          | 0      |        |         |      |      |      |        |      |       |         |         |        |      |      |
| 1       Casis       100       Casis       280       280       280       270       280       280       271       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th="">       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1<!--</td--><td>B Manure Management</td><td></td><td>752</td><td>75 2</td><td>868</td><td>954</td><td>1000</td><td>1018</td><td>1020</td><td>1030</td><td>1000</td><td>1013</td><td>1009</td><td>1005</td><td>1007</td><td>1023</td><td>997</td><td>994</td><td>1 0 0 5</td><td>997</td><td>1002</td><td>1007</td><td>1007</td></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B Manure Management                                 |                  | 752                     | 75 2        | 868          | 954          | 1000       | 1018         | 1020       | 1030   | 1000   | 1013    | 1009 | 1005 | 1007 | 1023   | 997  | 994   | 1 0 0 5 | 997     | 1002   | 1007 | 1007 |
| Decor       Decor <thdecor< th=""> <thdecor< th=""> <thd< td=""><td>1 Cattle</td><td></td><td>282</td><td>282</td><td>268</td><td>260</td><td>270</td><td>273</td><td>280</td><td>272</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thd<></thdecor<></thdecor<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 Cattle                                            |                  | 282                     | 282         | 268          | 260          | 270        | 273          | 280        | 272    |        |         |      |      |      |        |      |       |         |         |        |      |      |
| Na ban Cuta:         Image: marked marke                        | Option A: Dairy Cattle                              |                  | 213                     | 213         | 216          | 214          | 222        | 229          | 238        | 233    |        |         |      |      |      |        |      |       |         |         |        |      |      |
| 1       Nom       No       No <th< td=""><td>Non-Dairy Cattle</td><td></td><td>69</td><td>69</td><td>52</td><td>45</td><td>48</td><td>44</td><td>42</td><td>39</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Non-Dairy Cattle                                    |                  | 69                      | 69          | 52           | 45           | 48         | 44           | 42         | 39     |        |         |      |      |      |        |      |       |         |         |        |      |      |
| 3. Storp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 Buffalo                                           | NO               |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| • Cank         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O <td>3 Sheep</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 Sheep                                             |                  | 1                       | 1           | 1            | 1            | 1          | 0            | 1          | 1      |        |         |      |      |      |        |      |       |         |         |        |      |      |
| 1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 Goats                                             |                  | 0                       | 0           | 0            | 0            | 0          | 0            | 0          | 0      |        |         |      |      |      |        |      |       |         |         |        |      |      |
| • Near       • No       • Inde       • Inde       · Inde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 Camels and Llamas                                 | NO               |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 Horses                                            |                  | 4                       | 4           | 5            | 5            | 5          | 5            | 5          | 5      |        |         |      |      |      |        |      |       |         |         |        |      |      |
| s. Num       L       Add       Add       Add       Solid       Op       Add       Add <t< td=""><td>7 Mules and Asses</td><td>NO</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 Mules and Asses                                   | NO               |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| O Rohy       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O <td>8 Swine</td> <td></td> <td>448</td> <td>448</td> <td>578</td> <td>667</td> <td>698</td> <td>710</td> <td>705</td> <td>720</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 Swine                                             |                  | 448                     | 448         | 578          | 667          | 698        | 710          | 705        | 720    |        |         |      |      |      |        |      |       |         |         |        |      |      |
| In Order brance, hence specify: for faming       Image: Specify: for famin                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 Poultry                                           |                  | 6                       | 6           | 7            | 6            | 6          | 6            | 6          | 6      |        |         |      |      |      |        |      |       |         |         |        |      |      |
| 11       Landsoft Lagons       Image: marked                                         | 10 Other livestock (please specify): Fur farming    |                  | 9                       | 9           | 9            | 16           | 20         | 22           | 23         | 26     |        |         |      |      |      |        |      |       |         |         |        |      |      |
| 11-12 (jud) System       NA       No       N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11 Anaerobic Lagoons                                |                  |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| 13 Odd Songe and Dy Lat       NA       No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 Liquid Systems                                   |                  |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| 14 Ober AVMS       Image: Market                                | 13 Solid Storage and Dry Lot                        |                  |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| C Rec Cultivian       NA NO       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14 Other AWMS                                       |                  |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| D Agricultard Solis       Net       Image and Packet Manage       Image an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C Rice Cultivation                                  | NA, NO           | 0                       | 0           | 0            | 0            | 0          | 0            | 0          | 0      | 0      | 0       | 0    | 0    | 0    | 0      | 0    | 0     | 0       | 0       | 0      | 0    | 0    |
| I. Derect Sol Emissions       NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D Agricultural Soils                                |                  | 0                       | 0           | 0            | 0            | 0          | 0            | 0          | 0      | 0      | 0       | 0    | 0    | 0    | 0      | 0    | 0     | 0       | 0       | 0      | 0    | 0    |
| 2. Pater. Rage and Padock Maure       Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. Direct Soil Emissions                            | NE               |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| N. Elementario       NE       NE <td><ol><li>Pasture, Range and Paddock Manure</li></ol></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ol><li>Pasture, Range and Paddock Manure</li></ol> |                  |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| 1. Ober (pleas specify: sex below)       Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ol><li>Indirect Emissions</li></ol>                | NE               |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| Industrial wase used as fortilizer         NO         Image: Symma as as a symma as as a symma symma as a symma a                                 | <ol><li>Other (please specify: see below)</li></ol> |                  |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| Use of swages shuples as fertilizer         NO         Image of swages shuples as fertilizer         NO         Image of swages shuples as fertilizer         Image of swages shupes and swages shupes as fertilizer         Image of swages shupes and                                                                                                                                                                                 | Industrial waste used as fertilizer                 | NO               |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| I       NA       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Use of sewage slugde as fertilizer                  | NO               |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| F Field Barning of Agricultural Kesdaes         NA, O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O <td>E Prescribed Burning of Savann as</td> <td>NA</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E Prescribed Burning of Savann as                   | NA               | 0                       | 0           | 0            | 0            | 0          | 0            | 0          | 0      |        |         |      |      |      |        |      |       | 0       | 0       | 0      | 0    | 0    |
| G Other (please specify)       NA       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F Field Buming of Agricultural Residues             | NA, NO           | 0                       | 0           | 0            | 0            | 0          | 0            | 0          | 0      | 0      | 0       | 0    | 0    | 0    | 0      | 0    | 0     | 0       | 0       | 0      | 0    | 0    |
| 6. Wate       1460       1460       1460       1460       1460       1460       1460       133       1322       138       122       128       122       128       122       128       122       128       122       128       122       128       122       128       128       129       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128       128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G Other (please specify)                            | NA               | 0                       | 0           | 0            | 0            | 0          | 0            | 0          | 0      |        |         |      |      |      |        |      |       | 0       | 0       | 0      | 0    | 0    |
| A solid wate Disposal on Land       1.0134       1.034       1.286       1.192       1.188       1.1163       1.074       1.008       1.086       1.086       1.086       1.080       1.076       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.077       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078       1.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6. Waste                                            |                  | 1460                    | 1460        | 1463         | 14 09        | 1419       | 1442         | 1463       | 1338   | 1 36 2 | 1341    | 1323 | 1309 | 1292 | 1 28 8 | 1292 | 1297  | 1 296   | 1 31 3  | 1 34 4 | 1377 | 1405 |
| 1 Managed Waste Disposal on Land       1134       1128       1128       1131       11131       1103       1005       1006       1006       1006       1006       10078       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077       1077<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A Solid Waste Disposal on Land                      |                  | 1 3 3 4                 | 1 3 3 4     | 1286         | 1192         | 1188       | 11 31        | 1163       | 1074   | 1109   | 1 0 9 5 | 1086 | 1084 | 1080 | 1078   | 1076 | 1074  | 1078    | 1072    | 1074   | 1077 | 1075 |
| B       Valewater Handling       126       126       126       177       217       231       310       299       265       253       246       237       226       212       211       217       223       217       240       270       300       329         2       Domesic and Commercial Wastewater       IE       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""><td>1 Managed Waste Disposal on Land</td><td></td><td>1334</td><td>1334</td><td>1286</td><td>1192</td><td>1188</td><td>1131</td><td>1163</td><td>1074</td><td>1109</td><td>1095</td><td>1086</td><td>1084</td><td>1080</td><td>1078</td><td>1076</td><td>1074</td><td>1078</td><td>1072</td><td>1074</td><td>1077</td><td>1075</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 Managed Waste Disposal on Land                    |                  | 1334                    | 1334        | 1286         | 1192         | 1188       | 1131         | 1163       | 1074   | 1109   | 1095    | 1086 | 1084 | 1080 | 1078   | 1076 | 1074  | 1078    | 1072    | 1074   | 1077 | 1075 |
| 2 Domestic and Commercial Wastewater       126       126       127       217       217       231       310       299       265       253       246       237       226       212       211       217       223       217       240       270       300       329         C Waste Incluser agricity)      (9)       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B Wastewater Handling                               |                  | 126                     | 126         | 177          | 217          | 231        | 310          | 299        | 265    | 25 3   | 246     | 237  | 226  | 212  | 211    | 217  | 223   | 217     | 24 0    | 270    | 300  | 329  |
| C Wate Incineration       IE       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 Domestic and Commercial Wastewater                |                  | 126                     | 126         | 177          | 217          | 231        | 310          | 299        | 265    | 253    | 246     | 237  | 226  | 212  | 211    | 217  | 223   | 217     | 240     | 270    | 300  | 329  |
| D Other (plcase specify:)       NA       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""><td>C Waste Incineration</td><td>IE</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C Waste Incineration                                | IE               | 0                       | 0           | 0            | 0            | 0          | 0            | 0          | 0      | 0      | 0       | 0    |      |      |        |      |       | 0       | 0       | 0      | 0    | 0    |
| 7. Other (please specify)       NA       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D Other (please specify:)                           | (9)              | 0                       | 0           | 0            | 0            | 0          | 0            | 0          | 0,002  | 0      | 0       | 0    |      |      |        |      |       | 0       | 0       | 0      | 0    | 0    |
| Memo items (not included above):       Image: Constrained above):                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7. Other (please specify)                           | NA               | 0                       | 0           | 0            | 0            | 0          | 0            | 0          | 0      | 0      | 0       | 0    | 0    | 0    | 0      | 0    | 0     | 0       | 0       | 0      | 0    | 0    |
| International Bunkers       0       2       2       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Memo Items (not included above):                    |                  |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         | 0      | 0    | 0    |
| Aviation       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th="">       1       1       1<!--</td--><td>International Bunkers</td><td></td><td>2</td><td>2</td><td>3</td><td>3</td><td>3</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | International Bunkers                               |                  | 2                       | 2           | 3            | 3            | 3          | 2            | 2          | 2      | 2      | 2       | 2    | 3    | 3    | 3      | 3    | 3     | 3       | 3       | 3      | 3    | 3    |
| Marine       NO       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th="">       1       <th1< th=""> <th1< th=""></th1<></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aviation                                            |                  | 1                       | 1           | 1            | 1            | 1          | 1            | 1          | 1      | 1      | 1       | 1    | 1    | 1    | 1      | 1    | 1     | 1       | 1       | 1      | 1    | 1    |
| No       No       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marine                                              |                  | 1                       | 1           | 2            | 2            | 2          | 1            | 1          | 1      | 2      | 2       | 2    | 2    | 2    | 2      | 2    | 2     | 2       | 2       | 2      | 2    | 2    |
| Corrections from Biomass       Corrections (not included above):       Correctins (not included above):       Correctins (not                                                                                                                                                                                                                                                                                                                                                                                                         | Multilateral Operations                             | NO               |                         |             | -            | -            |            |              |            |        |        |         | 1    |      |      |        |      | -     |         |         | -      |      |      |
| Corrections (not included above):       Image: Constraint of the constraint of t                                | CO2 Emissions from Biomass                          |                  |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| Corrections (not included above):       Image: Constraint of the constraint of t                                | C OF LIMESTONS HOM DIGMETS                          |                  |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| C02 emissions related to Net Electricity Import       (10)       Image: Co2 emissions related to Temperature       Image: Co2 emissions related to Temperat                                                                                                                                                                                                                                                                                                                                             | Corrections (not included above):                   |                  |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| C02 emissions related to Temperature       (11)       Image: Color of the color of                                             | CO2 emissions related to Net Electricity Import     | (10)             |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| Notes:       (7): Window plate production, Research laboratories and Running shoes         (2): Industry mobile sources and machinery       (8): Other Products, Manufacture and Processing such as vessels, vehicles, machinery, wood, food and graphic         (3): Military mobile combustion of fuels       (9): Gasification of biogas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO2 emissions related to Temperatu re               | (11)             |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| (1): Boilers, gas turbines, stationary engines       (7): Window plate production, Research laboratories and Running shoes         (2): Industry mobile sources and machinery       (8): Other Products, Manufacture and Processing such as vessels, vehicles, machinery, wood, food and graphic         (3): Military mobile combustion of fuels       (9): Gasification of biogas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Notes                                               |                  |                         |             |              |              |            |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| (2): Industry mobile sources and machinery (3): Other Products, Manufacture and Processing such as vessels, vehicles, machinery, wood, food and graphic (3): Military mobile combustion of fuels (9): Gasification of biogas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1): Boilers, gas turbines, stationary engines      | (7): Window pl   | late production. Resear | ch laborato | ries and Ru  | nning shoe   | s          |              |            |        |        |         |      |      |      |        |      |       |         |         |        |      |      |
| (3): Military mobile combustion of fuels (9): Gasification of biogas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2): Industry mobile sources and machinery          | (8): Other Proc  | ducts, Manufacture and  | Processin   | g such as ve | essels, vehi | cles, mach | inery, wood, | food and g | raphic |        |         |      |      |      |        |      |       |         |         |        |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (3): Military mobile combustion of fuels            | (9): Gasificatio | on of biogas            |             |              |              |            |              | -          |        |        |         |      |      |      |        |      |       |         |         |        |      |      |

... (4): Glass Production ... (5): Catalysts/Fertilizers, Pesticides and Sulphuric acid ... (6): PFC used as detergent

... (10): minus means Net Electricity Export ... (11): temperature deviation from a normal year based on degree days NO: Not occurring / NE: Not estimated / NA: Not applicable / IE: Included elsewhere

| Table 10.4 | Historic and projected | nitrous oxide (N <sub>2</sub> O) en | nissions in ktonnes CO2 equivalents |
|------------|------------------------|-------------------------------------|-------------------------------------|
|------------|------------------------|-------------------------------------|-------------------------------------|

| $N_2O$ emissions and projections (Gg $CO_2$ equiv                                                         | alents)    | KP Base Year | 1990  | 1995 | 2000 | 2001   | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009   | 2010 | 2011 | 2012 | 2008-12 20 | 013-17 | 2020 | 2025 | 2030 |
|-----------------------------------------------------------------------------------------------------------|------------|--------------|-------|------|------|--------|------|------|------|------|------|------|------|--------|------|------|------|------------|--------|------|------|------|
| Denmark's Total Emissions excluding net CO2 and N2O from L                                                | ULUCF      | 10593        | 10593 | 9514 | 8545 | 8297   | 7944 | 7898 | 7589 | 6949 | 6929 | 6889 | 6848 | 6802   | 6742 | 6773 | 6679 | 6769       | 6598   | 6516 | 6416 | 6436 |
| 1. Energy                                                                                                 |            | 425          | 425   | 578  | 681  | 699    | 715  | 743  | 745  | 780  | 831  | 835  | 846  | 849    | 840  | 857  | 866  | 852        | 898    | 940  | 95 0 | 969  |
| A Fuel Combustion Activities (Sectoral Approach)                                                          |            | 424          | 424   | 576  | 678  | 695    | 712  | 740  | 741  | 778  | 828  | 832  | 843  | 846    | 836  | 85 3 | 862  | 848        | 895    | 936  | 947  | 966  |
| 1 Energy Industries                                                                                       |            | 119          | 119   | 154  | 150  | 158    | 162  | 171  | 154  | 141  | 172  | 165  | 166  | 163    | 151  | 160  | 163  | 161        | 177    | 185  | 168  | 167  |
| a Public Electricity and Heat Production                                                                  |            | 103          | 103   | 131  | 122  | 130    | 133  | 142  | 125  | 110  | 138  | 129  | 130  | 126    | 112  | 115  | 114  | 119        | 118    | 116  | 108  | 108  |
| b Petroleum Reining                                                                                       |            | 9            | 9     | 15   | 17   | 17     | 10   | 10   | 10   | 12   | 12   | 12   | 12   | 12     | 12   | 12   | 12   | 12         | 12     | 12   | 12   | 12   |
| c Manufacture of Solid Fuels and Other Energy Industries                                                  |            | 6            | 6     | 9    | 1/   | 1/     | 18   | 18   | 19   | 19   | 22   | 24   | 24   | 25     | 26   | 34   | 37   | 29         | 47     | 5/   | 48   | 48   |
| 2 Wand acturing moustness and Construction                                                                |            | 34           | 34    |      | 33   | 39     | 30   | 50   | 38   | 01   | 01   | 01   | 01   | 02     | 02   | 03   | 03   | 02         | 03     | 04   | - 04 | 04   |
| h Non-Ferrous Metals                                                                                      |            | 2            | 2     |      |      |        |      |      |      |      |      | 2    |      | 2      | 2    | 2    |      | 0          | 2      | 2    |      |      |
| c Chemicals                                                                                               |            | 3            | 3     | 0    | 4    | 0      | 0    | 4    | 0    | - 0  | 4    | 4    | 4    | 4      | 4    | 4    | 4    | 0          | 4      | 4    | 4    | 4    |
| d Pulp Paper and Print                                                                                    |            | 3            | 3     | 4    | 2    | 2      | 2    | - 4  | 4    | - 4  | 4    | 2    | - 4  | 2      | 2    | 2    | - 4  | 2          | 2      | 2    | 2    | - 4  |
| e Food Processing Beverages and Tobacco                                                                   |            | 13           | 13    | 13   | 13   | 13     | 12   | 12   | 12   | 12   | 12   | 12   | 12   | 12     | 12   | 12   | 12   | 12         | 12     | 12   | 12   | 12   |
| f Other (please specify:)                                                                                 | (1). (2)   | 33           | 33    | 36   | 37   | 38     | 36   | 36   | 38   | 41   | 40   | 40   | 41   | 41     | 42   | 42   | 42   | 42         | 43     | 43   | 44   | 44   |
| 3 Transport                                                                                               | (.),(_)    | 141          | 141   | 260  | 376  | 381    | 400  | 416  | 434  | 469  | 489  | 502  | 512  | 518    | 519  | 526  | 5 32 | 521        | 551    | 583  | 610  | 628  |
| a Civil Aviation                                                                                          |            | 3            | 3     | 3    | 2    | 2      | 2    | 2    | 2    | 3    | 3    | 3    | 3    | 3      | 3    | 3    | 3    | 3          | 3      | 3    | 3    | 3    |
| b Road Transportation                                                                                     |            | 125          | 125   | 242  | 363  | 369    | 386  | 402  | 421  | 456  | 477  | 490  | 500  | 506    | 507  | 514  | 520  | 509        | 539    | 571  | 597  | 615  |
| c Railways                                                                                                |            | 3            | 3     | 3    | 2    | 2      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2      | 2    | 2    | 2    | 2          | 2      | 2    | 2    | 2    |
| d Navigation                                                                                              |            | 10           | 10    | 12   | 8    | 8      | 10   | 9    | 9    | 8    | 8    | 8    | 8    | 8      | 7    | 7    | 7    | 8          | 7      | 7    | 7    | 7    |
| 4 Other Sectors                                                                                           |            | 109          | 109   | 102  | 92   | 95     | 93   | 96   | 91   | 105  | 103  | 102  | 102  | 102    | 102  | 102  | 101  | 102        | 101    | 101  | 103  | 104  |
| a Commercial/Institutional                                                                                |            | 12           | 12    | 10   | 8    | 7      | 7    | 9    | 8    | 11   | 11   | 11   | 11   | 11     | 10   | 10   | 10   | 10         | 10     | 10   | 10   | 10   |
| b Kesidential                                                                                             |            | 57           | 57    | 58   | 51   | 55     | 53   | 54   | 53   | 60   | 60   | 58   | 58   | 58     | 58   | 58   | 58   | 58         | 58     | 58   | 60   | 62   |
| c Agriculture/Forestry/Fisheries                                                                          | (2)        | 40           | 40    | 35   | 34   | 34     | 33   | 32   | 30   | 33   | 33   | 33   | 33   | 33     | 33   | 33   | 33   | 33         | 33     | 33   | 33   | 33   |
| 5 Other (please specify:)<br>P Engitive Emissions from Eucle                                              | (3)        | 1            |       | - 4  | 3    | 2      | 3    | 3    | 4    | 2    | 2    | 2    | 2    | 4      | 4    | 3    | 3    | 2          | 3      | 3    | 3    | 3    |
| 1 Solid Fuels                                                                                             | NA NO      | 0            | 0     | 0    | 0    | J<br>0 |      |      | 0    | - 2  | 0    | 0    | 0    | 5<br>0 |      | 4    | 4    | 0          | 4      | 4    |      | 0    |
| 2 Oil and Natural Cas                                                                                     | 114, 110   | 1            | 1     | 2    | 3    | 3      | 3    | 3    | 3    | 2    | 3    | 3    | 3    | 3      | 4    | 4    | 4    | 3          | 4      | 4    | 3    | 3    |
| a Oil                                                                                                     | NA         | •            |       | _    |      |        |      |      |      |      |      |      |      |        |      |      |      |            |        |      |      |      |
| b Natural Gas                                                                                             |            |              |       |      |      |        |      |      |      |      |      |      |      |        |      |      |      |            |        |      |      |      |
| c Venting and Flaring                                                                                     |            | 1            | 1     | 2    | 3    | 3      | 3    | 3    | 3    | 2    | 3    | 3    | 3    | 3      | 4    | 4    | 4    | 3          | 4      | 4    | 3    | 3    |
| Flaring                                                                                                   |            | 1            | 1     | 2    | 3    | 3      | 3    | 3    | 3    | 2    | 3    | 3    | 3    | 3      | 4    | 4    | 4    | 3          | 4      | 4    | 3    | 3    |
| 2. Industrial Processes                                                                                   |            | 1043         | 1043  | 904  | 1004 | 885    | 774  | 895  | 531  | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0    | 0    |
| A Mineral Products                                                                                        |            | 0            | 0     | 0    | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0    | 0    |
| 1 Cement Production                                                                                       |            |              |       |      |      |        |      |      |      |      |      |      |      |        |      |      |      |            |        |      |      |      |
| 2 Lime Production                                                                                         |            |              |       |      |      |        |      |      |      |      |      |      |      |        |      |      |      |            |        |      |      |      |
| 3 Limestone and Dolomite Use                                                                              |            |              |       |      |      |        |      |      |      |      |      |      |      |        |      |      |      |            |        |      |      |      |
| 5 Asphalt Roofing                                                                                         |            |              |       |      |      |        |      |      |      |      |      |      |      |        |      |      |      |            |        |      |      |      |
| 6 Road Paving with Asphalt                                                                                |            |              |       |      |      |        |      |      |      |      |      |      |      |        |      |      |      |            |        |      |      |      |
| 7 Other (please specify:)                                                                                 | (4), IE    | 0            | 0     | 0    | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0    | 0    |
| B Chemical Industry                                                                                       |            | 1043         | 1043  | 904  | 1004 | 885    | 774  | 895  | 531  | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0    | 0    |
| 2 Nitric Acid Production                                                                                  |            | 1043         | 1043  | 904  | 1004 | 885    | 774  | 895  | 531  | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0    | 0    |
| 5 Other (please specify:)                                                                                 | (5), NA,NO | 0            | 0     | 0    | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0    | 0    |
| C Metal Production                                                                                        |            | 0            | 0     | 0    | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0          | 0      | 0    |      | 0    |
| 1 Iron and Steel Production                                                                               |            |              |       |      |      |        |      |      |      |      |      |      |      |        |      |      |      |            |        |      |      |      |
| 4 SF6 Used in Aluminium and Magnesium Foundries                                                           |            |              |       |      |      |        |      |      |      |      |      |      |      |        |      |      |      |            |        |      |      |      |
| SF <sub>6</sub> Used in Magnesium Foundries                                                               |            |              |       |      |      |        |      |      |      |      |      |      |      |        |      |      |      |            |        |      |      |      |
| D Other Production                                                                                        |            |              |       |      |      |        |      |      |      |      |      |      |      |        |      |      |      |            |        |      |      |      |
| E Production of Halocarbons and Sulphur Hexanuoride                                                       |            |              |       |      |      |        |      |      |      |      |      |      |      |        |      |      |      |            |        |      |      |      |
| F Consumption of Haloc arbons and Supplier Hexandoride                                                    |            |              |       |      |      |        |      |      |      |      |      |      |      |        |      |      |      |            |        |      |      |      |
| 2 From Planting                                                                                           |            |              |       |      |      |        |      |      |      |      |      |      |      |        |      |      |      |            |        |      |      |      |
| 2 Foam Blowing                                                                                            |            |              |       |      |      |        |      |      |      |      |      |      |      |        |      |      |      |            |        |      |      |      |
| 5 Fire Extinguisners                                                                                      |            |              |       |      |      |        |      |      |      |      |      |      |      |        |      |      |      |            |        |      |      |      |
| 4. Aerosois/ Metered Dose Innaiers                                                                        |            |              |       |      |      |        |      |      |      |      |      |      |      |        |      |      |      |            |        |      |      |      |
| 6. Electrical Equipment (SF <sub>6</sub> )                                                                |            |              |       |      |      |        |      |      |      |      |      |      |      |        |      |      |      |            |        |      |      |      |
| 9 Other (please specify: see below)                                                                       | (6)        |              |       |      |      |        |      |      |      |      |      |      |      |        |      |      |      |            |        |      |      |      |
|                                                                                                           | (6)        |              |       |      |      |        |      |      |      |      |      |      | _    |        |      |      |      |            |        |      |      |      |
| $SF_6()$                                                                                                  | (/)        |              |       |      |      | -      |      |      |      |      |      |      | _    | -      | _    | _    | -    |            | -      | -    |      |      |
| G Other (please specify)                                                                                  | NA         | 0            | 0     | 0    | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0    | 0    |
| 3. Solvent and Other Product Use                                                                          |            | 0            | 0     | 0    | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0    | 0    |
| A Paint Application                                                                                       |            |              |       | -    |      | -      |      |      | -    |      |      |      |      |        |      |      |      |            |        |      |      |      |
| B Degreasing and Dry Cleaning                                                                             | NA         | 0            | 0     | 0    | 0    | 0      | 0    | 0    | 0    |      |      |      |      |        |      |      |      | 0          | 0      | 0    | 0    | 0    |
| <ul> <li>C. Chemical Products, Manufacture and Processing</li> <li>D. Other (places specify: )</li> </ul> | (0) NIA    |              | 0     |      | -    | -      | ^    |      |      |      |      |      |      |        |      |      |      | 0          | 0      | 0    | 0    | 0    |
| D Outer (prease specify: )                                                                                | (o), NA    | 0            | U     | 0    | 0    | 0      | 0    | 0    | 0    |      |      |      |      |        |      |      |      | U          | U      | 0    | 0    | 0    |
| N <sub>2</sub> O emissions and projections (Gg CO <sub>2</sub> equiv | valents) | KP Base Year | 1990  | 1995  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005 | 2006 | 2007 | 2008 | 2009  | 2010 | 2011  | 2012    | 2008-12 | 2013-17 | 2020 | 2025 | 2030 |
|----------------------------------------------------------------------|----------|--------------|-------|-------|-------|-------|-------|-------|-------|------|------|------|------|-------|------|-------|---------|---------|---------|------|------|------|
| 4. Agriculture                                                       |          | 9037         | 9037  | 7947  | 6795  | 6656  | 6397  | 6210  | 6260  | 6108 | 6038 | 5993 | 5941 | 5892  | 5841 | 5855  | 5753    | 5856    | 5639    | 5515 | 5406 | 5406 |
| A Enteric Fermentation                                               |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 1 Cattle                                                             |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| Option A: Dairy Cattle                                               |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| Non-Dairy Cattle                                                     |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 2 Buffalo                                                            |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 3 Sheep                                                              |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 4 Goats                                                              |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 5 Camels and Llamas                                                  |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 6 Horses                                                             |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 7 Mules and Asses                                                    |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 8 Swine                                                              |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 9 Poultry                                                            |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 10 Other (please specify)                                            |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| B Manure Management                                                  |          | 685          | 685   | 642   | 601   | 605   | 586   | 558   | 561   | 55 2 | 538  | 5 38 | 536  | 5 3 5 | 532  | 565   | 5 27    | 539     | 5 2 4   | 516  | 505  | 505  |
| 1 Cattle                                                             |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| Option A: Dairy Cattle                                               |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| Non-Dairy Cattle                                                     |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 2 Buffalo                                                            |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 3 Sheep                                                              |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 4 Goats                                                              |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 5 Camels and Llamas                                                  |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 6 Horses                                                             |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 7 Mules and Asses                                                    |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 8 Swine                                                              |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 9 Poultry                                                            |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 10 Other livestock (please specify): Fur farming                     |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 11 Anaerobic Lagoons                                                 | NO       |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         | 0       | 0       | 0    | 0    | 0    |
| 12 Liquid Systems                                                    |          | 96           | 96    | 84    | 81    | 81    | 81    | 78    | 78    |      |      |      |      |       |      |       |         | 0       | 0       | 0    | 0    | 0    |
| 13 Solid Storage and Dry Lot                                         |          | 589          | 589   | 558   | 521   | 524   | 505   | 481   | 484   |      |      |      |      |       |      |       |         | 0       | 0       | 0    | 0    | 0    |
| 14 Other AWMS                                                        | NO       |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         | 0       | 0       | 0    | 0    | 0    |
| C Rice Cultivation                                                   |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| D Agricultural Soils                                                 |          | 8 35 2       | 8352  | 7305  | 6193  | 6051  | 5811  | 5652  | 5699  | 5556 | 5500 | 5455 | 5405 | 5357  | 5309 | 5 291 | 5 2 2 5 | 5317    | 5114    | 4999 | 4900 | 4900 |
| 1. Direct Soil Emissions                                             |          | 4225         | 4225  | 3616  | 3238  | 3147  | 3004  | 2929  | 2942  | 2874 | 2859 | 2845 | 2831 | 2816  | 2797 | 2789  | 2767    | 2800    | 2724    | 2679 | 2635 | 2635 |
| <ol><li>Pasture, Range and Paddock Manure</li></ol>                  |          | 312          | 312   | 324   | 307   | 312   | 300   | 291   | 288   | 291  | 279  | 275  | 267  | 263   | 258  | 255   | 252     | 259     | 243     | 234  | 227  | 227  |
| <ol><li>Indirect Emissions</li></ol>                                 |          | 3787         | 3787  | 3311  | 2595  | 2526  | 2438  | 2362  | 2390  | 2321 | 2292 | 2265 | 2237 | 2209  | 2184 | 2177  | 2138    | 2189    | 2077    | 2017 | 1971 | 1971 |
| <ol><li>Other (please specify: see below)</li></ol>                  |          | 28           | 28    | 55    | 53    | 65    | 70    | 70    | 79    | 70   | 70   | 70   | 70   | 70    | 70   | 69    | 69      | 70      | 70      | 68   | 68   | 68   |
| Industrial waste used as fertilizer                                  |          | 9            | 9     | 27    | 31    | 44    | 49    | 49    | 61    |      |      |      |      |       |      |       |         | 0       | 0       | 0    | 0    | 0    |
| Use of sewage slugde as fertilizer                                   |          | 19           | 19    | 28    | 22    | 21    | 22    | 21    | 18    |      |      |      |      |       |      |       |         | 0       | 0       | 0    | 0    | 0    |
| E Prescribed Burning of Savannas                                     | NA       |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         | 0       | 0       | 0    | 0    | 0    |
| F Field Burning of Agricultural Residues                             | NA, NO   |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         | 0       | 0       | 0    | 0    | 0    |
| G Other (please specify)                                             | NA       |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         | 0       | 0       | 0    | 0    | 0    |
| 6. Waste                                                             |          | 88           | 88    | 85    | 65    | 57    | 58    | 50    | 53    | 61   | 61   | 61   | 61   | 61    | 61   | 61    | 61      | 61      | 61      | 61   | 61   | 61   |
| A Solid Waste Disposal on Land                                       |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| 1 Managed Waste Disposal on Land                                     |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| B Wastewater Handling                                                |          | 88           | 88    | 85    | 65    | 57    | 58    | 50    | 53    | 61   | 61   | 61   | 61   | 61    | 61   | 61    | 61      | 61      | 61      | 61   | 61   | 61   |
| 2 Domestic and Commercial Wastewater                                 |          | 88           | 88    | 85    | 65    | 57    | 58    | 50    | 53    | 61   | 61   | 61   | 61   | 61    | 61   | 61    | 61      | 61      | 61      | 61   | 61   | 61   |
| C Waste Incineration                                                 | IE       |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         | 0       | 0       | 0    | 0    | 0    |
| D Other (please specify:)                                            | (9)      | 0,000        | 0,000 | 0,003 | 0,025 | 0,017 | 0,019 | 0,022 | 0,015 | 0    | 0    | 0    | 0    | 0     | 0    | 0     | 0       | 0       | 0       | 0    | 0    | 0    |
| 7. Other (please specify)                                            | NA       | 0            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0     | 0    | 0     | 0       | 0       | 0       | 0    | 0    | 0    |
| Manage Térrer (and family de dash sam) -                             |          |              |       |       |       |       |       |       |       | _    |      |      |      |       |      |       |         |         |         |      |      | -    |
| Memoritems (not included above):                                     |          | 70           | 70    | 440   | 100   | 06    |       | 04    | 70    | 05   | 0.0  | 00   |      | 0.0   | 0.0  | 00    | 00      |         |         |      |      |      |
| Anistica Anistica                                                    |          | / 6          | 10    | 119   | 109   | 90    | 00    | 04    | 70    | 60   | 00   | 00   | 00   | 00    | 00   | 00    | 00      | 00      | 00      | 90   | 92   | 94   |
| Aviation                                                             |          | 18           | 18    | 20    | 25    | 26    | 22    | 23    | 26    | 24   | 25   | 25   | 25   | 25    | 25   | 25    | 25      | 25      | 26      | 29   | 31   | 33   |
| Marine                                                               | NO       | 00           | 00    | 99    | 04    | /1    | 36    | 01    | 50    | 01   | 01   | 01   | 01   | 01    | 01   | 01    | 01      | 01      | 01      | 01   | 01   | 01   |
| Muthateral Operations                                                | NU       |              |       |       |       |       |       |       |       |      |      |      | _    |       |      |       |         |         |         |      |      |      |
| CO2 Emissions from biomass                                           |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| Corrections (not included above):                                    |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| CO2 emissions related to Net Electricity Import                      | (10)     |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| CO2 emissions related to Temperature                                 | (11)     |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| cos emissions related to remperature                                 | (11)     |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |
| Notes:                                                               |          |              |       |       |       |       |       |       |       |      |      |      |      |       |      |       |         |         |         |      |      |      |

Notes: ... (1): Boliers, gas turbines, stationary engines ... (2): Industry mobile sources and machinery ... (3): Military mobile combustion of fuels ... (4): Glass Production ... (5): Catalysts/Fertilizers, Pesticides and Sulphuric acid ... (6): PFC used as detergent

... (7): Window plate production, Research laboratories and Running shoes
 ... (8): Other Products, Manufacture and Processing such as vessels, vehicles, machinery, wood, food and graphic
 ... (9): Gasification of biogas
 ... (10): minus means Net Electricity Export
 ... (11): temperature deviation from a normal year based on degree days
 NO: Not occurring / NE: Not estimated / NA: Not applicable / IE: Included elsewhere

| HFCs emissions and projections (Gg CO <sub>2</sub> equiva                  | lents)   | KP Base Year | 1990 | 1995 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007     | 2008 | 2009 | 2010 | 2011 | 2012 | 2008-12  | 2013-17  | 2020     | 2025     | 2030     |
|----------------------------------------------------------------------------|----------|--------------|------|------|------|------|------|------|------|------|------|----------|------|------|------|------|------|----------|----------|----------|----------|----------|
| Denmark's Total Emissions excluding net CO2 and N2O from LULU              | CF       | 218          | 0    | 218  | 605  | 647  | 672  | 695  | 749  | 815  | 837  | 889      | 892  | 873  | 853  | 804  | 740  | 832      | 536      | 171      | 171      | 171      |
| 1. Energy                                                                  |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| A Fuel Combustion Activities (Sectoral Approach)                           |          |              |      | 1    |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| 1 Energy Industries                                                        |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| a Public Electricity and Heat Production                                   |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| b Petroleum Refining                                                       |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      | L        |          |          | L        | L        |
| <ul> <li>Manufacture of Solid Fuels and Other Energy Industries</li> </ul> |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      | L        |          |          | <u> </u> | L        |
| 2 M anufacturing Industries and Construction                               |          |              |      |      |      |      |      |      |      |      |      | L        |      |      |      |      |      | <u> </u> |
| a Iron and Steel                                                           |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      | <u> </u> |          | <b>—</b> | <u> </u> | <u> </u> |
| b Non-Ferrous Metals                                                       |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      | <u> </u> |          | <b>—</b> | <u> </u> | <u> </u> |
| c Chemicals                                                                |          |              | -    |      |      |      |      |      |      |      |      |          |      |      |      |      |      | <u> </u> |          | <b>—</b> | <u> </u> | <u> </u> |
| d Pulp, Paper and Print                                                    |          |              |      |      |      |      |      |      |      | -    |      |          |      |      |      |      |      | <u> </u> |          | <u> </u> | <u> </u> | <u> </u> |
| e Food Processing, Beverages and Tobacco                                   | (1) (2)  |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      | -    | <u> </u> | <b> </b> | <u> </u> | <u> </u> | L        |
| 3 Transport                                                                | (1), (2) |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      | <b></b>  |          | <u> </u> | <b></b>  | <u> </u> |
| a Civil Aviation                                                           |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| b Road Transportation                                                      |          |              |      |      |      |      |      |      |      |      |      | -        |      |      |      |      |      |          |          |          |          |          |
| c Railways                                                                 |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| d Navigation                                                               |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| 4 Other Sectors                                                            |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| a Commercial/Institutional                                                 |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| b Residential                                                              |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| c Agriculture/Forestry/Fisheries                                           |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| 5 Other (please specify:)                                                  | (3)      |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      | <u> </u> |          | L        | <u> </u> |          |
| B Fugitive Emissions from Fuels                                            |          |              |      |      |      |      |      |      |      |      |      | <u> </u> |      |      |      |      |      | <u> </u> |
| 1 Solid Fuels                                                              |          |              | -    |      | -    |      |      |      |      |      | -    | -        |      |      |      |      |      | <u> </u> | <b></b>  | <b>—</b> | <u> </u> |          |
| 2 On and Natural Gas                                                       |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      | <u> </u> | <u> </u> | <u> </u> | <u> </u> |          |
| a Oli<br>b Natural Gas                                                     |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      | <u> </u> |          | <u> </u> | <u> </u> | <u> </u> |
| c Venting and Flaring                                                      |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      | <u> </u> |          | <u> </u> |          |          |
| Flaring                                                                    |          |              | 1    |      |      |      |      |      |      |      |      | -        |      |      |      |      |      |          |          |          |          |          |
| 2. Industrial Processes                                                    |          | 218          | 0    | 218  | 605  | 647  | 672  | 695  | 749  | 815  | 837  | 889      | 892  | 873  | 853  | 804  | 740  | 832      | 536      | 171      | 171      | 171      |
| A Mine ral Products                                                        |          |              |      | 1    |      | 1    |      |      |      |      | 1    |          |      |      |      |      |      |          |          |          |          |          |
| 1 Cement Production                                                        |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| 2 Lime Production                                                          |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| 3 Limestone and Dolomite Use                                               |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| 5 Asphalt Roofing                                                          |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| 6 Road Paving with Asphalt                                                 |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| 7 Other (please specify:)                                                  | (4)      |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| B Chemical Industry                                                        |          | 0            | 0 0  | 0    | 0    | 0    | 0    | 0    | C    | 0 0  | 0 0  | 0        | 0    | 0    | 0    | 0    | 0    | 0        | / 0      | 0        | 0        | 0        |
| 2 Nitric Acid Production                                                   |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| 5 Other (please specify:)                                                  | (5)      |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| C Metal Production                                                         |          | 0            | 0 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0 0  | 0 0  | 0        | 0    | 0    | 0    | 0    | 0    | 0        | 0        | 0        | 0        | 0        |
| 1 Iron and Steel Production                                                |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| 4 SF6 Used in Aluminium and Magnesium Foundries                            |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| SF <sub>6</sub> Used in Magnesium Foundries                                |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| D Other Production                                                         | NE       |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| E Production of Halocarbons and Sulphur Hexafluoride                       |          |              |      |      |      |      |      |      |      | 0    | 0 0  | 0        | 0    | 0    | 0    | 0    | 0    | 0        | / 0      | 0        | 0        | 0        |
| F Consumption of Halocarbons and Sulphur Hexafluoride                      |          | 218          | 8 0  | 218  | 605  | 647  | 672  | 695  | 749  | 815  | 837  | 889      | 892  | 873  | 853  | 804  | 740  | 832      | . 536    | 171      | 171      | 171      |
| <ol> <li>Refrigeration and Air Conditioning Equipment</li> </ol>           |          | 35           | 0    | 35   | 420  | 449  | 502  | 557  | 596  | 668  | 734  | 786      | 790  | 778  | 766  | 727  | 675  | 747      | 510      | 171      | 171      | 171      |
| 2 Foam Blowing                                                             |          | 183          | 0    | 183  | 168  | 186  | 160  | 129  | 144  | 144  | 103  | 103      | 102  | 95   | 87   | 77   | 66   | 85       | 26       | 0        | 0        | 0        |
| 3 Fire Extinguishers                                                       | NO       |              |      |      |      |      |      |      |      |      |      | L        |      |      |      | -    |      | 0        | 0        | 0        | 0        | 0        |
| 4. Aerosols/ Metered Dose Inhalers                                         |          | 0            | 0 0  | 0    | 17   | 12   | 10   | 10   | g    | 9 4  | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0        | 0        | 0        | 0        | 0        |
| 8. Electrical Equipment (SF <sub>6</sub> )                                 |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| 9 Other (please specify: see below)                                        |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          | <b></b>  |          |
| $C_{3}F_{8}()$                                                             | (6)      |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| SF <sub>6</sub> ()                                                         | (7)      |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| G Other (please specify)                                                   | NA       |              |      | L    |      |      |      |      |      | 1    |      |          |      |      |      |      |      | L        |          |          |          |          |
| 3. Solvent and Other Product Use                                           |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| A Paint Application                                                        |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| B Degreasing and Dry Cleaning                                              |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |
| C Chemical Products, Manufacture and Processing                            |          |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          | <b></b>  | -        |
| D Other (please specify: )                                                 | (8)      |              |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |          |          |          |          |          |

| HFCs emissions and projections (Gg CO <sub>2</sub> equiva | lents)      | KP Base Year            | 1990                 | 1995                     | 2000       | 2001         | 2002       | 2003        | 2004       | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2008-12 | 2013-17 | 2020 | 2025     | 2030     |
|-----------------------------------------------------------|-------------|-------------------------|----------------------|--------------------------|------------|--------------|------------|-------------|------------|------|------|------|------|------|------|------|------|---------|---------|------|----------|----------|
| 4. Agriculture                                            |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| A Enteric Fermentation                                    |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| 1 Cattle                                                  |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| Option A: Dairy Cattle                                    |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| Non-Dairy Cattle                                          |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         | /    |          | <u> </u> |
| 2 Buffalo                                                 |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          | <u> </u> |
| 3 Sheep                                                   |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          | <u> </u> |
| 4 Goats                                                   |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          | <b></b>  |
| 6 Horses                                                  |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| 7 Mules and Asses                                         |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| 8 Swine                                                   |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| 9 Poultry                                                 |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| 10 Other (please specify)                                 |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| B Manure Management                                       |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          | <u> </u> |
| 1 Cattle                                                  |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          | <u> </u> |
| Option A: Dairy Cattle                                    |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          | <u> </u> |
| 2 Buffalo                                                 |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          | <b></b>  |
| 3 Sheep                                                   |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| 4 Goats                                                   |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| 5 Camels and Llamas                                       |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| 6 Horses                                                  |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| 7 Mules and Asses                                         |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| 8 Swine                                                   |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         | /    |          | <u> </u> |
| 9 Poultry                                                 |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          | <u> </u> |
| 10 Other livestock (please specify): Fur farming          |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          | <u> </u> |
| 11 Anaerobic Lagoons                                      |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          | <b></b>  |
| 13 Solid Storage and Dry Lot                              |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| 14 Other AWMS                                             |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| C Rice Cultivation                                        |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| D Agricultural Soils                                      |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| 1. Direct Soil Emissions                                  |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| <ol><li>Pasture, Range and Paddock Manure</li></ol>       |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          | L        |
| 3. Indirect Emissions                                     |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         | /    |          | <u> </u> |
| 4. Other (please specify: see below)                      |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      | <u> </u> |          |
| Lise of sewage slugde as fertilizer                       |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          | <u> </u> |
| E Prescribed Burning of Savannas                          |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| F Field Burning of Agricultural Residues (1)              |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| G Other (please specify)                                  |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| 6. Waste                                                  |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| A Solid Waste Disposal on Land                            |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| 1 Managed Waste Disposal on Land                          |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         | /    |          | <u> </u> |
| B Wastewater H andling                                    |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          | <u> </u> |
| 2 Domestic and Commercial Wastewater                      |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          | <u> </u> |
| C waste incineration D Other (please specify: )           | (0)         |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          | <b></b>  |
| 7 Other (please specify)                                  | (3)         |                         |                      | -                        |            |              |            |             |            |      |      |      |      |      |      |      | -    |         |         |      |          |          |
|                                                           |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      | -       |         | —    |          |          |
| Memo items (not included above):                          |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      | -       |         |      |          | <u> </u> |
| Aviation                                                  |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          | <u> </u> |
| Marine                                                    |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| Multilateral Operations                                   |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| C O2 Emissions from Biomass                               |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| Compations (not included above):                          |             |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| Corrections (not included above):                         | (10)        |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| $C_{02}$ emissions related to Temperature                 | (11)        |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      | -    |         |         |      |          | <u> </u> |
| e oz emissions teracu to temperature                      | (11)        |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          | ·        |
| Notes:<br>(1): Poilers, and turbings, stationany angings  | (7) · Minde | ow plate production P   | ocoarch Ial          | horotorios /             | and Dunnin | a choos      |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| (2): Industry mobile sources and machinery                | (8): Other  | Products, Manufactur    | e and Proc           | essing suc               | h as vesse | ls, vehicles | , machiner | y, wood, fo | od and gra | phic |      |      |      |      |      |      |      |         |         |      |          |          |
| (3): Military mobile combustion of fuels                  | (9): Gasif  | ication of biogas       |                      | <b>.</b>                 |            |              |            |             | 0          |      |      |      |      |      |      |      |      |         |         |      |          |          |
| (4): Glass Production                                     | (10): minu  | us means Net Electricit | y Export             | uppr hor                 | on door    | dava         |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
| (5): Galaysis/Fertilizers, Pesticides and Sulphuric acid  | NO: Not occ | urring / NE: Not esti   | na normal<br>mated / | year based<br>NA: Not an | on degree  | IE: Includ   | ed elsewhe | ere         |            |      |      |      |      |      |      |      |      |         |         |      |          |          |
|                                                           | 2           |                         |                      |                          |            |              |            |             |            |      |      |      |      |      |      |      |      |         |         |      |          |          |

109

| PFCs emissions and projections (Gg CO <sub>2</sub> equival    | ents)    | KP Base Year | 1990 | 1995 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2008-12 | 2013-17 | 2020     | 2025     | 2030 |
|---------------------------------------------------------------|----------|--------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------|---------|----------|----------|------|
| Denmark's Total Emissions excluding net CO2 and N2O from LULU | CF       | 1            | 0    | 1    | 18   | 22   | 22   | 19   | 16   | 14   | 12   | 11   | 10   | 10   | 9    | 9    | 9    | 9       | 7       | 6        | 6        | 6    |
| 1. Energy                                                     |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| A Fuel Combustion Activities (Sectoral Approach)              |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| 1 Energy Industries                                           |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| a Public Electricity and Heat Production                      |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| b Petroleum Refining                                          |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| c Manufacture of Solid Fuels and Other Energy Industries      |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| 2 M anufacturing Industries and Construction                  |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| a Iron and Steel                                              |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| b Non-Ferrous Metals                                          |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| c Chemicals                                                   |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| d Pulp, Paper and Print                                       |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| e Food Processing, Beverages and Tobacco                      |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| f Other (please specify:)                                     | (1), (2) |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| 3 Transport                                                   |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| a Civil Aviation                                              |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| b Road Transportation                                         |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| c Railways                                                    |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         | <u> </u> | <b></b>  |      |
| d Navigation                                                  |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         | <u> </u> | L        |      |
| 4 Other Sectors                                               |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          | <b> </b> |      |
| a Commercial/Institutional                                    |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          | <b> </b> |      |
| b Residential                                                 |          |              |      |      |      |      |      | -    |      |      |      |      |      |      |      |      |      |         |         | <b>—</b> | <b>I</b> | -    |
| c Agriculture/Forestry/Fisheries                              | (0)      |              | -    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         | <u> </u> | <u> </u> |      |
| 5 Other (please specify:)                                     | (3)      |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         | <u> </u> | <u> </u> |      |
| B Fugilive Emissions from Fuels                               |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          | <u> </u> |      |
| 2 Oil and Natural Cas                                         |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          | -    |
|                                                               |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          | -    |
| h Natural Gas                                                 |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| c Venting and Flaring                                         |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| Flaring                                                       |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| 2. Industrial Processes                                       |          | 1            | 0    | 1    | 18   | 22   | 22   | 2 19 | 16   | 14   | 12   | 11   | 10   | 10   | 9    | 9    | 9    | 9       | 7       | 6        | 6        | ί e  |
| A Mineral Products                                            |          |              | ĺ.   |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| 1 Cement Production                                           |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| 2 Lime Production                                             |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| 3 Limestone and Dolomite Use                                  |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| 5 Asphalt Roofing                                             |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| 6 Road Paving with Asphalt                                    |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| 7 Other (please specify:)                                     | (4)      |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| B Chemical Industry                                           |          | 0            | ) 0  | 0    | 0    | 0    | 0    | 0 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0 0     | 0       | , 0      | 0        | / C  |
| 2 Nitric Acid Production                                      |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| 5 Other (please specify:)                                     | (5), NA  |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| C Metal Production                                            |          | C            | ) 0  | 0    | 0    | 0    | 0    | 0 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0 0     | 0       | 0        | 0        | / C  |
| 1 Iron and Steel Production                                   |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| 4 SF6 Used in Aluminium and Magnesium Foundries               |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| SF <sub>6</sub> Used in Magnesium Foundries                   |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| D Other Production                                            |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| E Production of Halocarbons and Sulphur Hex afluoride         |          | 0            | ) 0  | 0    | 0    | 0    | 0    | 0 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | ) 0     | 0       | 0        | 0        | ) (  |
| F Consumption of Halocarbons and Sulphur Hexafluoride         |          | 1            | 0    | 1    | 18   | 22   | 22   | 19   | 16   | 14   | 12   | 11   | 10   | 10   | 9    | 9    | 9    | 9       | 7       | 6        | 6        | i e  |
| 1 Refrigeration and Air Conditioning Equipment                |          | 1            | 0    | 1    | 16   | 18   | 19   | 18   | 16   | 14   | 12   | 11   | 10   | 10   | 9    | 9    | 9    | 9       | 7       | 6        | 6        | 6 از |
| 2 Foam Blowing                                                | NA       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| 3 Fire Extinguishers                                          | NO       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| 4. Aerosols/ Metered Dose Inhalers                            | NA       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| 8. Electrical Equipment (SF <sub>6</sub> )                    | NA       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| 9 Other (please specify: see below)                           |          | 0            | 0 0  | 0    | 2    | 4    | 4    | 2    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0       | 0        | C        | 0    |
| $C_{3}F_{8}()$                                                | (6)      | 0            | 0 0  | 0    | 2    | 4    | 4    | 2    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0       | 0        | C        |      |
| SF <sub>4</sub> ()                                            | (7)      |              |      | -    |      |      |      | _    |      |      |      | -    |      |      |      |      |      |         |         |          |          |      |
| G Other (please specify)                                      | NA       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          | 1    |
| 3 Solvent and Other Product Lise                              |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| A Paint Application                                           |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          | -    |
| B Degreasing and Dry Cleaning                                 |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| C Chemical Products, Manufacture and Processing               |          |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |
| D Other (please specify: )                                    | (8)      |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |          |          |      |

## Table 10.6 Historic and projected perfluorocarbons (PFCs) emissions in ktonnes CO<sub>2</sub> equivalents.

| PFCs emissions and projections (Gg CO <sub>2</sub> equivale | ents) | KP Base Year | 1990 | 1995 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2008-12 | 2013-17 | 2020 | 2025 | 2030     |
|-------------------------------------------------------------|-------|--------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------|---------|------|------|----------|
| 4. Agriculture                                              |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| A Enteric Fermentation                                      |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| 1 Cattle                                                    |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| Option A: Dairy Cattle                                      |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| Non-Dairy Cattle                                            |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| 2 Buffalo                                                   |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| 3 Sheep                                                     |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| 4 Goats                                                     |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| 5 Camels and Llamas                                         |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| 6 Horses                                                    |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| 7 Mules and Asses                                           |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| 8 Swine                                                     |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| 9 Poultry                                                   |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      | L        |
| 10 Other (please specify)                                   |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| B Manure Management                                         |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      | <b></b>  |
| 1 Cattle                                                    |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      | <u> </u> |
| Option A: Dairy Cattle                                      |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      | <u> </u> |
| Non-Dairy Cattle                                            |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      | <u> </u> |
| 2 Buffalo                                                   |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      | <b></b>  |
| 3 Sheep                                                     |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      | <u> </u> |
| 4 Goats                                                     |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      | <u> </u> |
| 5 Cameis and Llamas                                         |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      | —        |
| 6 Horses                                                    |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      | <b>I</b> |
| / Mules and Asses                                           |       |              |      |      |      | -    |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      | l        |
| 8 Swine                                                     |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      | l        |
| 9 Poultry                                                   |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      | <b> </b> |
| 10 Other Ilvestock (please specify): Fur farming            |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      | <b>—</b> |
| 11 Anaerobic Lagoons                                        |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      | <b>—</b> |
| 12 Liquid Systems                                           |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      | <b>I</b> |
| 15 Solid Storage and Dry Lot                                |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| C Disa Cultivation                                          |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      | <u> </u> |
| D Agricultural Soils                                        |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| 1 Direct Soil Emissions                                     |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| 2. Pasture, Range and Paddock Manure                        |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| 3. Indirect Emissions                                       |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| 4. Other (please specify: see below)                        |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| Industrial waste used as fertilizer                         |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| Use of sewage slugde as fertilizer                          |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| E Prescribed Burning of Savannas                            |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| F Field Burning of Agricultural Residues (1)                |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| G Other (please specify)                                    |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| 6. Waste                                                    |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| A Solid Waste Disposal on Land                              |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| 1 Managed Waste Disposal on Land                            |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| B Wastewater H andling                                      |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| 2 Domestic and Commercial Wastewater                        |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| C Waste Incineration                                        |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| D Other (please specify:)                                   | (9)   |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| 7. Other (please specify)                                   |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| Memo Items (not included above):                            |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      | -        |
| International Bunkers                                       |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| Aviation                                                    |       |              |      |      |      | _    |      |      |      |      |      |      |      |      |      | _    |      |         |         |      |      |          |
| Marine                                                      |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| Multilateral Operations                                     |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| C O2 Emissions from Biomass                                 |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| Connections (not included above)                            |       |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |
| COncerning (not included above):                            | (10)  |              |      |      |      | _    |      |      |      | -    |      |      |      |      |      | _    |      |         |         |      |      | -        |
| C O2 emissions related to Net Electricity Import            | (10)  |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      | <u> </u> |
| CO2 emissions related to Temperature                        | (11)  |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |      |          |

... (7): Window plate production, Research laboratories and Running shoes
 ... (8): Other Products, Manufacture and Processing such as vessels, vehicles, machinery, wood, food and graphic
 ... (9): Gasification of biogas
 ... (10): minus means Net Electricity Export
 ... (11): temperature deviation from a normal year based on degree days
 NO: Not occurring / NE: Not estimated / NA: Not applicable / IE: Included elsewhere

- Notes: ... (1): Boilers, gas turbines, stationary engines ... (2): Industry mobile sources and machinery ... (3): Military mobile combustion of fuels ... (4): Glass Production ... (5): Catalysts/Fertilizers, Pesticides and Sulphuric acid ... (6): PFC used as detergent

| SF <sub>6</sub> emissions and projections (Gg CO <sub>2</sub> equivale | en ts)    | KP Base Year | 1990 | 1995 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007         | 2008 | 2009 | 2010 | 2011 | 2012 | 2008-12 | 2013-17 | 2020 | 2025     | 2030       |
|------------------------------------------------------------------------|-----------|--------------|------|------|------|------|------|------|------|------|------|--------------|------|------|------|------|------|---------|---------|------|----------|------------|
| Denmark's Total Emissions excluding net CO2 and N2O from LUI           | JUCF      | 107          | 44   | 107  | 59   | 30   | 25   | 31   | 33   | 35   | 36   | 36           | 36   | 36   | 37   | 69   | 115  | 59      | 112     | 59   | 59       | 59         |
| 1. Energy                                                              |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| A Fuel Combustion Activities (Sectoral Annroach)                       | 1         |              |      |      |      |      |      |      |      |      |      | i            |      |      |      |      | -    |         | 1       |      |          | 1          |
| 1 Energy Industries                                                    |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| a Public Electricity and Heat Production                               |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| b Petroleum Refining                                                   |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| c Manufacture of Solid Fuels and Other Energy Industries               |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| 2 Manufacturing Industries and Construction                            |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| a Iron and Steel                                                       |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| b Non-Ferrous Metals                                                   |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| c Chemicals                                                            |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| d Pulp, Paper and Print                                                |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| e Food Processing, Beverages and Tobacco                               |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| f Other (please specify:)                                              | (1), (2)  |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| 3 Transport                                                            |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| a Civil Aviation                                                       |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| b Road Transportation                                                  |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| c Railways                                                             |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| d Navigation                                                           |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| 4 Other Sectors                                                        |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| a Commercial/Institutional                                             |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          | -          |
| b Residential                                                          |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          | 4          |
| c Agriculture/Forestry/Fisheries                                       |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      | <u> </u> | <u> </u>   |
| 5 Other (please specify:)                                              | (3)       |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      | <b>—</b> |            |
| B Fugilive Emissions from Fuels                                        |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      | <u> </u> | 4          |
| 1 Solid Fucis                                                          |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      | <u> </u> |            |
|                                                                        |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      | <u> </u> |            |
| h Natural Gas                                                          |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      | <u> </u> | <u> </u>   |
| c Venting and Flaring                                                  |           |              |      |      |      |      |      |      |      |      |      | -            |      |      |      |      |      |         |         |      |          |            |
| Flaring                                                                |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| 2. In dustrial Processes                                               | 1         | 107          | 44   | 107  | 59   | 30   | 25   | 31   | 33   | 35   | 36   | 36           | 36   | 36   | 37   | 69   | 115  | 59      | 112     | 59   | 59       | 59         |
| A Mineral Products                                                     |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| 1 Cement Production                                                    |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| 2 Lime Production                                                      |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| 3 Limestone and Dolomite Use                                           |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| 5 Asphalt Roofing                                                      |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| 6 Road Paving with Asphalt                                             |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| 7 Other (please specify:)                                              | (4)       |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| B Chemic al Industry                                                   |           | 0            | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0            | 0    | 0    | 0    | 0    | 0    | 0       | 0       | 0    | 0        | , (        |
| 2 Nitric Acid Production                                               |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| 5 Other (please specify:)                                              | (5)       |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      | 0       | 0       | 0    | 0        | , (        |
| C Metal Production                                                     |           | 36           | 31   | 36   | 21   | 0    | 0    | 0    | 0    | 0    | 0    | 0            | 0    | 0    | 0    | 0    | 0    | 0       | 0       | 0    | 0        | , (        |
| 1 Iron and Steel Production                                            |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| 4 SF <sub>6</sub> Used in Aluminium and Magnesium Foundries            |           | 36           | 31   | 36   | 21   | 0    | 0    | 0    | 0    | 0    | 0    | 0            | 0    | 0    | 0    | 0    | 0    | 0       | 0       | 0    | 0        | , <b>(</b> |
| SF <sub>6</sub> Used in Magnesium Foundries                            | 2001- :NO | 36           | 31   | 36   | 21   | 0    | 0    | 0    | 0    | 0    | 0    | 0            | 0    | 0    | 0    | 0    | 0    | 0       | 0       | 0    | 0        | , (        |
| D Other Production                                                     |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| E Production of Haloc arbons and Sulphur Hexafluoride                  | NA, NO    |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| F Consumption of Halocarbons and Sulphur Hex afluoride                 |           | 71           | 13   | 71   | 38   | 30   | 25   | 31   | 33   | 35   | 36   | 36           | 36   | 36   | 37   | 69   | 115  | 59      | 112     | 59   | 59       | 59         |
| 1 Refrigeration and Air Conditioning Equipment                         | NA        |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| 2 Foam Blowing                                                         | NA        |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| 3 Fire Extinguishers                                                   | NO        |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| 4. Aerosols/ Metered Dose Inhalers                                     | NA        |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| <ol> <li>Electrical Equipment (SF<sub>6</sub>)</li> </ol>              |           | 4            | 1    | 4    | 11   | 13   | 9    | 10   | 10   | 12   | 12   | 12           | 13   | 13   | 13   | 14   | 14   | 13      | 15      | 16   | 16       | 16         |
| 9 Other (please specify: see below)                                    |           | 68           | 12   | 68   | 27   | 18   | 16   | 22   | 23   | 23   | 24   | 24           | 23   | 23   | 23   | 55   | 101  | 45      | 97      | 43   | 43       | 43         |
| $C_3F_8()$                                                             | (6)       |              |      |      |      |      |      |      |      |      |      | 1            |      |      |      |      |      |         |         |      |          |            |
| SE <sub>6</sub> ()                                                     | (7)       | 68           | 12   | 68   | 27   | 18   | 16   | 22   | 23   | 23   | 24   | . 24         | 23   | 23   | 23   | 55   | 101  | 45      | 97      | 43   | 4.2      | 43         |
| G Other (nlease specify)                                               | NA        |              |      |      |      |      |      |      | 0    |      |      | 1 <u>-</u> 7 |      |      |      |      | 1    | 10      | 0       | 0    | 0        |            |
| 3 Solvent and Other Product Lise                                       |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         | t – ľ   |      | Ē        | È          |
| A Paint Application                                                    |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| B Degreasing and Dry Cleaning                                          |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| C Chemical Products, Manufacture and Processing                        |           |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |
| D Other (please specify: )                                             | (8)       |              |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |         |         |      |          |            |

## Table 10.7 Historic and projected sulphur hexafluoride (SF<sub>6</sub>) emissions in ktonnes CO<sub>2</sub> equivalents.

| SF <sub>6</sub> emissions and projections (Gg CO <sub>2</sub> equivale | en ts) | KP Base Year | 1990 | 1995 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2008-12 | 2013-17 | 2020 | 2025         | 2030     |
|------------------------------------------------------------------------|--------|--------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------|---------|------|--------------|----------|
| 4. A griculture                                                        |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| A Enteric Fermentation                                                 | 1      |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| 1 Cattle                                                               |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| Option A: Dairy Cattle                                                 |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| Non-Dairy Cattle                                                       |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| 2 Buffalo                                                              |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| 3 Sheep                                                                |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| 4 Goats                                                                |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| 5 Camels and Llamas                                                    |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| 6 Horses                                                               |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| 7 Mules and Asses                                                      |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| 8 Swine                                                                |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| 9 Poultry                                                              |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| 10 Other (please specify)                                              |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| B Manure Management                                                    |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| 1 Cattle                                                               |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              | L        |
| Option A: Dairy Cattle                                                 |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| Non-Dairy Cattle                                                       |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| 2 Buffalo                                                              |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      | للسلم        |          |
| 3 Sheep                                                                |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              | <u> </u> |
| 4 Goats                                                                |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| 5 Camels and Llamas                                                    |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      | -    |         |         |      |              |          |
| 6 Horses                                                               |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              | <u> </u> |
| 7 Mules and Asses                                                      |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      | <b>└──</b> ' | <u> </u> |
| 8 Swine                                                                |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      | <u> </u>     | <u> </u> |
| 9 Poultry                                                              |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      | <b>└──</b> ′ | <u> </u> |
| 10 Other livestock (please specify): Fur farming                       |        |              | -    |      |      |      |      |      |      | -    |      |      |      |      |      |      |      |         |         |      | <u> </u>     | <u> </u> |
| 11 Anaerobic Lagoons                                                   |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      | <b>└──</b>   | <u> </u> |
| 12 Liquid Systems                                                      |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         | -    | <u> </u>     | <u> </u> |
| 13 Solid Storage and Dry Lot                                           |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      | <u> </u>     |          |
| C Dire Cultivitien                                                     |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      | <u> </u>     |          |
| C Rice Cultivation                                                     |        | -            |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| 1 Direct Soil Emissions                                                |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| Direct Son Emissions     Dense and Baddook Manure                      |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      | L            |          |
| 2. I diture, Range and I addock Manure                                 |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| 4. Other (please specify: see below)                                   |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      | <u> </u>     |          |
| 4. Ouler (please speerly, see below)                                   |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              | <u> </u> |
| Use of sewage slugde as fertilizer                                     |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              | <u> </u> |
| E Prescribed Burning of Sayannas                                       |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| F Field Burning of Agricultural Residues (1)                           |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| G Other (please specify)                                               |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| 6. Waste                                                               |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| A Solid Waste Disposal on Land                                         |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              | <u> </u> |
| 1 Managed Waste Disposal on Land                                       |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| B Wastewater Handling                                                  |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| 2 Domestic and Commercial Wastewater                                   |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| C Waste Incineration                                                   |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| D Other (please specify:)                                              | (9)    |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| 7. Other (nle ase specify)                                             |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| va č č/<br>Mana Mana (mating algebra)                                  |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      | -       |         |      |              | <u> </u> |
| Memo Items (not included above):                                       |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      | -    |         |         |      | <u> </u>     |          |
| Aniotice                                                               |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      | -    | -       |         |      |              | <u> </u> |
| Aviation                                                               |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      | -    | -       |         |      |              | <u> </u> |
| Multilateral Occupations                                               |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      | -    |         |         |      |              |          |
| CO2 Emissions from Biomass                                             |        |              |      |      |      |      | _    |      |      |      |      |      |      |      |      |      |      |         |         | _    |              | <u> </u> |
| C O2 Emissions from biomass                                            |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| Corrections (not included above):                                      |        |              |      | _    | _    |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| C O2 emissions related to Net Electricity Import                       | (10)   |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
| C O2 emissions related to Temperature                                  | (11)   |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |
|                                                                        |        |              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |         |      |              |          |

... (7): Window plate production, Research laboratories and Running shoes
 ... (8): Other Products, Manufacture and Processing such as vessels, vehicles, machinery, wood, food and graphic
 ... (9): Gasification of biogas
 ... (10): minus means Net Electricity Export
 ... (11): temperature deviation from a normal year based on degree days
 NO: Not occurring / NE: Not estimated / NA: Not applicable / IE: Included elsewhere

- Notes: ... (1): Boliers, gas turbines, stationary engines ... (2): Industry mobile sources and machinery ... (3): Millitary mobile combustion of fuels ... (4): Glass Production ... (5): Catalysts/Fertilizers, Pesticides and Sulphuric acid ... (6): PFC used as detergent

| Table 10.8 | Historic and projected | l greenhouse ga | s (GHG) emissions | in ktonnes CO | 2 equivalents. |
|------------|------------------------|-----------------|-------------------|---------------|----------------|
|------------|------------------------|-----------------|-------------------|---------------|----------------|

| GHG emissions and projections (Gg CO <sub>2</sub> equiva      | al en ts)  | KP Base Year | 1990       | 1995       | 2000    | 2001   | 2002    | 2003    | 2004      | 2005  | 2006    | 2007   | 2008  | 2009  | 2010   | 2011        | 2012  | 2008-12 | 2013-17      | 2020  | 2025        | 2030  |
|---------------------------------------------------------------|------------|--------------|------------|------------|---------|--------|---------|---------|-----------|-------|---------|--------|-------|-------|--------|-------------|-------|---------|--------------|-------|-------------|-------|
| Denmark's Total Emissions excluding net CO2 and N2 O from LUL | UCF        | 69323,336    | 69042      | 76314      | 68177   | 69693  | 68910   | 74064   | 68092     | 60705 | 71575   | 70547  | 71046 | 69531 | 65146  | 66508       | 66772 | 67800   | 67371        | 64257 | 61634       | 60386 |
| 1. Energy                                                     |            | 52121        | 52121      | 59984      | 52601   | 54 231 | 53853   | 59197   | 53525     | 46765 | 57630   | 56652  | 57252 | 55844 | 51 559 | 52982       | 53393 | 54 206  | 54377        | 51873 | 4 94 03     | 48132 |
| A Fuel Combustion Activities (Sectoral Approach)              |            | 51817        | 51817      | 59555      | 51924   | 53514  | 53232   | 58560   | 52812     | 46225 | 57033   | 56012  | 56618 | 55198 | 50856  | 52280       | 52703 | 53531   | 53688        | 51187 | 4 8901      | 47631 |
| 1 Energy Industries                                           |            | 26315        | 26315      | 32330      | 25576   | 26895  | 27051   | 31902   | 25865     | 19048 | 29886   | 28923  | 29558 | 28173 | 23903  | 25329       | 25775 | 26548   | 26691        | 23843 | 21302       | 19713 |
| a Public Electricity and Heat Production                      |            | 24861        | 24861      | 30199      | 23110   | 24438  | 24528   | 29339   | 23278     | 16377 | 26951   | 25892  | 26474 | 25041 | 20627  | 21435       | 21574 | 23030   | 21647        | 17968 | 16195       | 14606 |
| b Petroleum Refining                                          |            | 908          | 908        | 1387       | 999     | 1020   | 982     | 1024    | 999       | 1018  | 1018    | 1018   | 1018  | 1018  | 1018   | 1018        | 1018  | 1018    | 1018         | 1018  | 1018        | 1018  |
| 2 Manufacture of Solid Fuels and Other Energy Industries      |            | 540          | 540        | 6048       | 6037    | 6111   | 5787    | 5785    | 1088      | 5687  | 5635    | 2013   | 2000  | 2114  | 2208   | 2876        | 5871  | 2499    | 4026<br>5889 | 4830  | 4088        | 4088  |
| a Iron and Steel                                              |            | 320          | 320        | 284        | 335     | 347    | 413     | 413     | 407       | 407   | 407     | 407    | 407   | 407   | 407    | 407         | 407   | 407     | 407          | 407   | 407         | 407   |
| b Non-Ferrous Metals                                          |            | 12           | 12         | 17         | 14      | 16     | 14      | 14      | 14        | 14    | 14      | 14     | 14    | 14    | 14     | 14          | 407   | 14      | 14           | 14    | 14          | 14    |
| c Chemicals                                                   |            | 382          | 382        | 441        | 481     | 514    | 462     | 462     | 465       | 465   | 465     | 465    | 465   | 465   | 465    | 465         | 465   | 465     | 465          | 465   | 465         | 465   |
| d Pulp, Paper and Print                                       |            | 370          | 370        | 223        | 238     | 252    | 226     | 226     | 222       | 222   | 222     | 222    | 222   | 222   | 222    | 222         | 222   | 222     | 222          | 222   | 222         | 222   |
| e Food Processing, Beverages and Tobacco                      |            | 1695         | 1695       | 1905       | 1744    | 1740   | 1599    | 1601    | 1632      | 1632  | 1632    | 1632   | 1632  | 1632  | 1632   | 1632        | 1632  | 1632    | 1632         | 1632  | 1632        | 1632  |
| f Other (please specify:)                                     | (1), (2)   | 2706         | 2706       | 3177       | 3227    | 3242   | 3073    | 3069    | 3191      | 2947  | 2895    | 2914   | 2957  | 3018  | 3092   | 3117        | 3131  | 3063    | 3149         | 3178  | 3199        | 3203  |
| 3 Transport                                                   |            | 10529        | 10529      | 11973      | 1 244 9 | 12441  | 1 26 32 | 1 30 81 | 1 3 3 4 6 | 13667 | 1 39 08 | 14 021 | 14082 | 14085 | 14 022 | 14102       | 14190 | 14 096  | 14494        | 15064 | 1 54 36     | 15766 |
| a Civil Aviation                                              |            | 246          | 246        | 202        | 157     | 164    | 142     | 139     | 131       | 130   | 132     | 134    | 135   | 136   | 136    | 136         | 137   | 136     | 144          | 155   | 165         | 176   |
| b Road Transportation                                         |            | 9418         | 9418       | 10798      | 11591   | 11599  | 11726   | 12184   | 12498     | 12856 | 13095   | 13215  | 13286 | 13301 | 13255  | 13335       | 13422 | 13320   | 13/21        | 14279 | 14641       | 14961 |
| d Navigation                                                  |            | 300          | 300        | 306        | 230     | 213    | 212     | 220     | 218       | 204   | 204     | 204    | 204   | 204   | 204    | 204         | 204   | 204     | 204          | 204   | 204         | 204   |
| 4 Other Sectors                                               |            | 9359         | 9359       | 8948       | 774 9   | 7969   | 7672    | 7698    | 74 27     | 7699  | 74 80   | 7289   | 7156  | 7057  | 6976   | 427<br>6867 | 674 2 | 6960    | 420<br>6489  | 6237  | 420<br>6100 | 6084  |
| a Commercial/Institutional                                    |            | 1419         | 1419       | 1139       | 940     | 910    | 921     | 997     | 982       | 948   | 937     | 924    | 910   | 900   | 890    | 876         | 860   | 887     | 845          | 836   | 828         | 816   |
| b Residential                                                 |            | 5208         | 5208       | 5288       | 4319    | 4561   | 4335    | 4343    | 4231      | 4342  | 4164    | 3981   | 3853  | 3752  | 3664   | 3575        | 3469  | 3663    | 3257         | 3038  | 2912        | 2913  |
| c Agriculture/Forestry/Fisheries                              |            | 2732         | 2732       | 2521       | 2490    | 2498   | 2416    | 2358    | 2213      | 2410  | 2379    | 2385   | 2393  | 2405  | 2422   | 2417        | 2413  | 2410    | 2388         | 2364  | 2361        | 2355  |
| 5 Other (please specify:)                                     | (3)        | 1 20         | 1 20       | 256        | 112     | 99     | 90      | 94      | 24 3      | 124   | 1 24    | 124    | 1 24  | 1 24  | 124    | 124         | 124   | 124     | 125          | 125   | 125         | 12    |
| B Fugitive Emissions from Fuels                               |            | 304          | 304        | 4 29       | 677     | 717    | 621     | 637     | 713       | 540   | 597     | 640    | 634   | 647   | 703    | 702         | 690   | 675     | 689          | 686   | 501         | 501   |
| 1 Solid Fuels                                                 | NA, NO     | 0            | 0          | 0          | 0       | 0      | 0       | 0       | 0         | 0     | 0       | 0      | 0     | 0     | 0      | 0           | 0     | 0       | 0            | 0     | 0           | (     |
| 2 Oil and Natural Gas                                         |            | 304          | 304        | 4 29       | 677     | 717    | 621     | 637     | 713       | 540   | 597     | 640    | 634   | 647   | 703    | 702         | 690   | 675     | 689          | 686   | 501         | 501   |
| a Oil                                                         |            | 32           | 32         | 48         | 73      | 72     | 76      | 78      | 93        | 78    | 75      | 73     | 68    | 66    | 31     | 31          | 32    | 46      | 32           | 30    | 25          | 25    |
| b Natural Gas                                                 |            | 6            | 6          | 12         | 5       | 6      | 4       | 4       | 7         | 4     | 4       | 4      | 4     | 4     | 4      | 3           | 3     | 4       | 3            | 2     | 2           | - 2   |
| c Venting and Flaring                                         |            | 267          | 267        | 369        | 600     | 639    | 541     | 555     | 614       | 459   | 519     | 564    | 563   | 577   | 800    | 667         | 654   | 626     | 654          | 654   | 475         | 4/5   |
| 2 Industrial Processes                                        |            | 207          | 21.89      | 2676       | 3367    | 3293   | 31.90   | 3213    | 3060      | 2615  | 2673    | 2724   | 2729  | 2706  | 2671   | 26.56       | 264.0 | 2680    | 24.30        | 1995  | 1992        | 1987  |
| A Mineral Products                                            |            | 1072         | 1072       | 14.07      | 164.0   | 1660   | 1696    | 1571    | 1728      | 1703  | 1740    | 1740   | 1743  | 1738  | 1724   | 1726        | 1728  | 1732    | 1727         | 1712  | 1709        | 1704  |
| 1 Cement Production                                           |            | 882          | 882        | 1204       | 1406    | 1432   | 1452    | 1370    | 1539      | 1539  | 1539    | 1539   | 1539  | 1539  | 1539   | 1539        | 1539  | 1539    | 1539         | 1539  | 1539        | 1539  |
| 2 Lime Production                                             |            | 152          | 152        | 132        | 123     | 119    | 141     | 112     | 110       | 110   | 110     | 110    | 110   | 110   | 110    | 110         | 110   | 110     | 110          | 110   | 110         | 110   |
| 3 Limestone and Dolomite Use                                  |            | 18           | 18         | 55         | 94      | 92     | 85      | 74      | 64        | 39    | 75      | 76     | 78    | 74    | 60     | 62          | 64    | 68      | 62           | 48    | 44          | 39    |
| 5 Asphalt Roofing                                             | ( < 0.5)   | 0            | 0          | 0          | 0       | 0      | 0       | 0       | 0         | 0     | 0       | 0      | 0     | 0     | 0      | 0           | 0     | 0       | 0            | 0     | 0           |       |
| 6 Road Paving with Asphalt                                    |            | 2            | 2          | 2          | 2       | 2      | 2       | 2       | 2         | 2     | 2       | 2      | 2     | 2     | 2      | 2           | 2     | 2       | 2            | 2     | 2           | 2     |
| 7 Other (please specify:)                                     | (4)        | 17           | 17         | 14         | 16      | 16     | 16      | 13      | 13        | 13    | 13      | 13     | 13    | 13    | 13     | 13          | 13    | 13      | 13           | 13    | 13          | 13    |
| B Chemical Industry                                           |            | 1044         | 1044       | 905        | 1004    | 886    | 775     | 896     | 534       | 3     | 3       | 3      | 3     | 3     | 3      | 3           | 3     | 3       | 3            | 3     | 3           | 3     |
| 2 Nitric Acid Production                                      |            | 1043         | 1043       | 904        | 1004    | 885    | 774     | 895     | 531       | 0     | 0       | 0      | 0     | 0     | 0      | 0           | 0     | 0       | 0            | 0     | 0           | 0     |
| 5 Other (please specify:)                                     | (5)        | 1            | 1          | 1          | 1       | 1      | 1       | 1       | 3         | 3     | 3       | 3      | 3     | 3     | 3      | 3           | 3     | 3       | 3            | 3     | 3           | 3     |
| C Metal Production                                            |            | 64           | 60         | 74         | 62      | 47     | 0       | 0       | 0         | 45    | 45      | 45     | 45    | 45    | 45     | 45          | 45    | 45      | 4 5          | 45    | 45          | 45    |
| 1 Iron and Steel Production                                   | 2002-4: NO | 28           | 28         | 39         | 41      | 47     | 0       | 0       | 0         | 45    | 45      | 45     | 45    | 45    | 45     | 45          | 45    | 45      | 45           | 45    | 45          | 45    |
| 4 SF <sub>6</sub> Used in Aluminium and Magnesium Foundries   |            | 36           | 31         | 36         | 21      | 0      | 0       | 0       | 0         | 0     | 0       | 0      | 0     | 0     | 0      | 0           | 0     | 0       | 0            | 0     | 0           | C     |
| SF <sub>6</sub> Used in Magnesium Foundries                   |            | 36           | 31         | 36         | 21      | 0      | 0       | 0       | 0         | 0     | 0       | 0      | 0     | 0     | 0      | 0           | 0     | 0       | 0            | 0     | 0           | C     |
| D Other Production                                            | NE         | 0            | 0          | 0          | 0       | 0      | 0       | 0       | 0         | 0     | 0       | 0      | 0     | 0     | 0      | 0           | 0     | 0       | 0            | 0     | 0           | 0     |
| E Production of Halocarbons and Sulphur Hexafluoride          | NA, NO     | 0            | 0          | 0          | 0       | 0      | 0       | 0       | 0         | 0     | 0       | 0      | 0     | 0     | 0      | 0           | 0     | 0       | 0            | 0     | 0           |       |
| F Consumption of Halocarbons and Sulphur Hexafluoride         |            | 290          | 13         | 290        | 660     | 700    | 719     | 746     | 798       | 864   | 885     | 936    | 938   | 919   | 899    | 882         | 864   | 900     | 655          | 235   | 235         | 235   |
| Refrigeration and Air Conditioning Equipment                  |            | 36           | 0          | 36         | 436     | 468    | 521     | 575     | 612       | 682   | 746     | 797    | 800   | 788   | 775    | 736         | 683   | 756     | 517          | 176   | 1/6         | 176   |
| 2 Foam Blowing                                                |            | 183          | 0          | 183        | 168     | 186    | 160     | 129     | 144       | 144   | 103     | 103    | 102   | 95    | 87     | 77          | 66    | 85      | 26           | 0     | 0           |       |
| 3 Fire Extinguishers                                          |            | 0            | 0          | 0          | 0       | 0      | 0       | 0       | 0         | 0     | 0       | 0      | 0     | 0     | 0      | 0           | 0     | 0       | 0            | 0     | 0           |       |
| 4. Aerosols/ Metered Dose Inhalers                            |            | 0            | 0          | 0          | 17      | 12     | 10      | 10      | 9         | 4     | 0       | 0      | 0     | 0     | 0      | 0           | 0     | 0       | 0            | 0     | 0           |       |
| 8. Electrical Equipment (SF <sub>6</sub> )                    |            | 4            | 1          | 4          | 11      | 13     | 9<br>S  | 10      | 10        | 12    | 12      | 12     | 13    | 13    | 13     | 14          | 14    | 13      | 15           | 16    | 16          | 16    |
| 9 Other (please specify: see below)                           | (*)        | 68           | 12         | 68         | 29      | 21     | 20      | 23      | 23        | 23    | 24      | 24     | 23    | 23    | 23     | 55          | 101   | 45      | 97           | 43    | 43          | 43    |
| C <sub>3</sub> F <sub>8</sub> ()                              | (6)        | 0            | 0          | 0          | 2       | 4      | 4       | 2       | 0         | 0     | 0       | 0      | 0     | 0     | 0      | 0           | 0     | 0       | 0            | 0     | 0           |       |
| SF <sub>6</sub> ()                                            | (7)        | 68           | 12         | 68         | 27      | 18     | 16      | 22      | 23        | 23    | 24      | 24     | 23    | 23    | 23     | 55          | 101   | 45      | 97           | 43    | 43          | 43    |
| G Other (please specify)                                      | NA         | 0            | 0          | 0          | 0       | 0      | 0       | 0       | 0         | 0     | 0       | 0      | 0     | 0     | 0      | 0           | 0     | 0       | 0            | 0     | 0           | (     |
| 3. Solvent and Other Product Use                              |            | 137          | 1 37       | 1 23       | 120     | 113    | 106     | 107     | 113       | 113   | 113     | 113    | 113   | 113   | 113    | 113         | 113   | 113     | 113          | 113   | 113         | 113   |
| A Paint Application                                           |            | 24           | 24         | 20         | 20      | 18     | 17      | 19      | 21        | 21    | 21      | 21     | 21    | 21    | 21     | 21          | 21    | 21      | 21           | 21    | 21          | 21    |
| B Degreasing and Dry Cleaning                                 |            | 46           | 46         | 38         | 37      | 34     | 30      | 28      | 27        | 27    | 27      | 27     | 27    | 27    | 27     | 27          | 27    | 27      | 27           | 27    | 27          | 27    |
| D. Other (plance specific )                                   | (9)        | 3            | 3          | 2          | 3       | = 2    | 2       | 2       | 2         | 2     | 2       | 2      | 2     | 2     | 2      | 2           | 2     | 2       | 2            | 2     | 2           | 2     |
| D Omer (please specify: )                                     | (8)        | 64           | <b>6</b> 4 | <b>6</b> 4 | 60      | 59     | 56      | 58      | 63        | 63    | 63      | 63     | 63    | 63    | 63     | 63          | 63    | 63      | 63           | 63    | 63          | 63    |

| GHG emissions and projections (Gg CO <sub>2</sub> equiva                           | lents)        | KP Base Year           | 1990           | 1995          | 2000          | 2001          | 2002        | 2003          | 2004    | 2005  | 2006  | 2007  | 2008  | 2009  | 2010   | 2011   | 2012     | 2008-12   | 2013-17 | 2020    | 2025   | 2030    |
|------------------------------------------------------------------------------------|---------------|------------------------|----------------|---------------|---------------|---------------|-------------|---------------|---------|-------|-------|-------|-------|-------|--------|--------|----------|-----------|---------|---------|--------|---------|
| 4. Agriculture                                                                     |               | 1 304 8                | 13048          | 11983         | 10611         | 10577         | 10258       | 10031         | 10000   | 9788  | 9756  | 9673  | 9581  | 9514  | 9453   | 9402   | 9268     | 9444      | 9077    | 8870    | 8688   | 8688    |
| A Enteric Fermentation                                                             |               | 3259                   | 3259           | 3169          | 2862          | 2920          | 2844        | 2801          | 2711    | 2681  | 2706  | 2671  | 2636  | 261 5 | 2589   | 2550   | 2521     | 2582      | 2441    | 2354    | 2275   | 2275    |
| 1 Cattle                                                                           |               | 2950                   | 2950           | 2823          | 2484          | 2525          | 2448        | 2400          | 2305    |       |       |       |       |       |        |        |          |           |         |         |        |         |
| Option A: Dairy Cattle                                                             |               | 1844                   | 1844           | 1792          | 1564          | 1562          | 1555        | 1554          | 1493    |       |       |       |       |       |        |        |          |           |         |         |        |         |
| Non-Dairy Cattle                                                                   |               | 1106                   | 1106           | 1031          | 920           | 963           | 893         | 846           | 812     |       |       |       |       |       |        |        |          |           |         |         |        |         |
| 2 Buffalo                                                                          | NO            | 0                      | 0              | 0             | 0             | 0             | 0           | 0             | 0       |       |       |       |       |       |        |        |          |           |         |         |        |         |
| 3 Sheep                                                                            |               | 33                     | 33             | 29            | 29            | 33            | 27          | 30            | 29      |       |       |       |       |       |        |        |          |           |         |         |        |         |
| 4 Goats                                                                            |               | 2                      | 2              | 3             | 3             | 3             | 3           | 3             | 3       |       |       |       |       |       |        |        |          |           |         |         |        |         |
| 5 Camels and Llamas                                                                | NO            | 0                      | 0              | 0             | 0             | 0             | 0           | 0             | 0       |       |       |       |       |       |        |        |          |           |         |         |        |         |
| 6 Horses                                                                           |               | 60                     | 60             | 64            | 67            | 68            | 69          | 69            | 69      |       |       |       |       |       |        |        |          |           |         |         |        |         |
| 7 Mules and Asses                                                                  | NO            | 0                      | 0              | 0             | 0             | 0             | 0           | 0             | 0       |       |       |       |       |       |        |        |          |           |         |         |        |         |
| 8 Swine                                                                            |               | 213                    | 213            | 250           | 278           | 291           | 297         | 299           | 304     |       |       |       |       |       |        |        |          |           |         |         |        |         |
| 9 Poultry                                                                          | NE            | 0                      | 0              | 0             | 0             | 0             | 0           | 0             | 0       | -     |       |       |       |       |        |        |          |           |         |         |        |         |
| 10 Other (please specify)                                                          | NE            | 0                      | 0              | 1500          | 0             | 1 605         | 1604        | 1.570         | 4504    | 4550  | 4554  | 4547  | 4544  | 454.0 | 4.554  | 4 50 4 | 4.50     | 1 4 5 4 4 | 45.00   | 4 5 4 0 | 4 54 2 | 4 54 2  |
| B Manure Management                                                                |               | 14 37                  | 14-37          | 1509          | 1000          | 1000          | 1604        | 10/0          | 1591    | 1992  | 1001  | 1947  | 1941  | 104 2 | 1 004  | 1001   | 1522     | 2 1044    | 1522    | 1910    | 1513   | 1013    |
| I Cattle                                                                           |               | 282                    | 282            | 208           | 260           | 270           | 2/3         | 280           | 272     |       |       |       |       |       |        |        |          |           |         |         |        |         |
| Non Dairy Cattle                                                                   |               | 213                    | 213            | 210           | 214           | 222           | 229         | 230           | 200     |       |       |       |       |       |        |        |          |           |         |         |        |         |
| 2 Buffslo                                                                          | NO            | 09                     | 03             | 0             | 43            | 40            | 44          | 42            | 0       |       |       |       |       |       |        |        |          |           |         |         |        |         |
| 3 Sheen                                                                            | NO            | 1                      | 1              | 1             | 1             | 1             | 0           | 1             | 1       |       |       |       |       |       |        |        |          |           |         |         |        |         |
| 4 Goats                                                                            |               | 0                      | 0              |               |               | 0             | 0           |               |         |       |       |       |       |       |        |        |          |           |         |         |        |         |
| 5 Camels and Llamas                                                                | NO            | 0                      | n              | 0             | 0             | 0             | 0           | n             | 0       |       |       |       |       |       |        |        |          | 1         |         |         |        |         |
| 6 Horses                                                                           |               | 4                      | 4              | 5             | 5             | 5             | 5           | 5             | 5       |       |       |       |       |       |        |        | İ        | 1         |         |         |        |         |
| 7 Mules and Asses                                                                  | NO            | 0                      | 0              | 0             | 0             | 0             | 0           | 0             | 0       |       |       |       |       |       |        |        |          | 1         |         |         |        |         |
| 8 Swine                                                                            |               | 448                    | 448            | 578           | 667           | 698           | 710         | 705           | 720     |       |       |       |       |       |        |        |          |           |         |         |        |         |
| 9 Poultry                                                                          |               | 6                      | 6              | 7             | 6             | 6             | 6           | 6             | 6       |       |       |       |       |       |        |        |          |           |         |         |        |         |
| 10 Other livestock (please specify): Fur farming                                   |               | 9                      | 9              | 9             | 16            | 20            | 22          | 23            | 26      |       |       |       |       |       |        |        |          |           |         |         |        |         |
| 11 Anaerobic Lagoons                                                               | NO            | 0                      | 0              | 0             | 0             | 0             | 0           | 0             | 0       |       |       |       |       |       |        |        |          |           |         |         |        |         |
| 12 Liquid Systems                                                                  |               | 96                     | 96             | 84            | 81            | 81            | 81          | 78            | 78      |       |       |       |       |       |        |        |          |           |         |         |        |         |
| 13 Solid Storage and Dry Lot                                                       |               | 589                    | 589            | 558           | 521           | 524           | 505         | 481           | 484     |       |       |       |       |       |        |        |          |           |         |         |        |         |
| 14 Other AWMS                                                                      | NO            | 0                      | 0              | 0             | 0             | 0             | 0           | 0             | 0       |       |       |       |       |       |        |        |          |           |         |         |        |         |
| C Rice Cultivation                                                                 | NA, NO        | 0                      | 0              | 0             | 0             | 0             | 0           | 0             | 0       | 0     | 0     | 0     | 0     | 0     | 0      | 0      | 0        | 0 0       | 0       | 0       | 0      | 0       |
| D Agricultural Soils                                                               |               | 8352                   | 8352           | 7305          | 6193          | 6051          | 5811        | 5652          | 5699    | 5556  | 5500  | 54 55 | 54 05 | 5357  | 5309   | 5291   | 5225     | 5 5317    | 5114    | 4999    | 4 90 0 | 4 900   |
| 1. Direct Soil Emissions                                                           |               | 4225                   | 4225           | 3616          | 3238          | 3147          | 3004        | 2929          | 2942    | 2874  | 2859  | 2845  | 2831  | 2816  | 2797   | 2789   | 2767     | 2800      | 2724    | 2679    | 2635   | 2635    |
| 2. Pasture, Range and Paddock Manure                                               |               | 312                    | 312            | 324           | 307           | 312           | 300         | 291           | 288     | 291   | 279   | 275   | 267   | 263   | 258    | 255    | 252      | 2 259     | 243     | 234     | 227    | 227     |
| 3. Indirect Emissions                                                              |               | 3787                   | 3787           | 3311          | 2595          | 2526          | 2438        | 2362          | 2390    | 2321  | 2292  | 2265  | 2237  | 2209  | 2184   | 2177   | 2138     | 3 2189    | 2077    | 2017    | 1971   | 1971    |
| 4. Other (please specify: see below)                                               |               | 28                     | 28             | 55            | 53            | 65            | 70          | 70            | 79      | 70    | 70    | 70    | 70    | 70    | 70     | 69     | 69       | 9 70      | 70      | 68      | 68     | 68      |
| Industrial waste used as fertilizer                                                |               | 9                      | 9              | 27            | 31            | 44            | 49          | 49            | 61      | -     |       |       |       |       |        |        |          |           |         |         |        |         |
| Use of sewage slugde as fertilizer                                                 |               | 19                     | 19             | 28            | 22            | 21            | 22          | 21            | 18      |       |       |       | •     |       |        |        | <u> </u> |           |         |         | 0      |         |
| E Prescribed Burning of Savannas                                                   |               | 0                      | 0              | 0             | 0             | 0             | 0           | 0             | 0       | 0     | 0     | 0     | 0     | 0     | 0      | 0      |          |           | 0       | 0       | 0      | 0       |
| G. Other (please specify)                                                          | NA, NO        | 0                      | 0              | 0             | 0             | 0             | 0           | 0             | 0       | 0     | 0     | 0     | 0     | 0     | 0      | 0      |          |           | 0       | 0       | 0      | 0       |
| 6 Wasta                                                                            | INA           | 1547                   | 1547           | 1548          | 1478          | 1479          | 1502        | 1515          | 1 3 9 4 | 1423  | 14.02 | 1384  | 1370  | 1354  | 1 24 9 | 1353   | 1358     | 3 1357    | 1374    | 1405    | 1438   | 1466    |
| A Solid Worte Disperation Land                                                     |               | 134/                   | 1 3 3 4        | 1286          | 1192          | 1188          | 11 31       | 1163          | 1074    | 1423  | 1095  | 1086  | 1084  | 1080  | 1078   | 1076   | 1074     | 1078      | 1072    | 1074    | 1077   | 1075    |
| A Solid Waste Disposal on Land     Managed Waste Disposal on Land                  |               | 1334                   | 1994           | 1296          | 1102          | 1100          | 1121        | 1162          | 1074    | 1100  | 1005  | 1096  | 1094  | 1000  | 1079   | 1076   | 1074     | 1 1079    | 1072    | 1074    | 1077   | 1075    |
| B Wastewater Handling                                                              |               | 213                    | 213            | 262           | 283           | 289           | 369         | 34.9          | 31.8    | 314   | 307   | 298   | 287   | 273   | 272    | 278    | 284      | 279       | 302     | 331     | 361    | 391     |
| 2 Domestic and Commercial Wastewater                                               |               | 213                    | 213            | 262           | 283           | 289           | 369         | 349           | 318     | 314   | 307   | 298   | 287   | 273   | 272    | 278    | 284      | 1 279     | 302     | 331     | 361    | 391     |
| C Waste Incineration                                                               | IE            | 0                      | 0              | 0             | 0             | 0             | 0           | 0             | 0       | 0     | 0     | 0     | 0     | 0     | 0      | 0      |          | 0 0       | 0       | 0       | 0      | 0       |
| D Other (please specify:)                                                          | (9)           | Ő                      | Ő              | Ő             | 3             | 2             | 3           | 3             | 2       | Ő     | Ő     | Ő     | Ő     | Ő     | Ő      | Ő      |          | o õ       | Ő       | Ő       | Ő      | Ő       |
| 7. Other (please specify)                                                          | NA            | 0                      | 0              | 0             | 0             | 0             | 0           | 0             | 0       | 0     | 0     | 0     | 0     | 0     | 0      | 0      | 0        | 0 0       | 0       | 0       | 0      | 0       |
| Mana Itana (at tinda dad abasa) :                                                  |               |                        |                |               |               |               |             |               |         |       |       |       |       |       |        | _      |          | -         |         |         |        | _       |
| Internetional Runkow                                                               |               | 1001                   | 4 904          | 70.50         | 6744          | 6080          | 51.09       | 5350          | 5070    | 54 90 | 5517  | 55.54 | 55.67 | 5570  | 5500   | 5 64 4 | 5 FC C   | 5562      | 56.96   | 590.2   | 6022   | 6 2 7 2 |
| A visting                                                                          |               | 4 9 04                 | 4 304          | 1000          | 0741          | 0000          | 2002        | 0166          | 2475    | 3480  | 0016  | 0050  | 0066  | 0000  | 0000   | 0044   | 0067     | 7 0061    | 0495    | 0701    | 0002   | 2072    |
| Marine                                                                             |               | 3149                   | 3149           | 5162          | 4365          | 3677          | 3025        | 2100          | 2475    | 3201  | 3201  | 3201  | 3201  | 3201  | 2009   | 3201   | 3201     | 3201      | 3201    | 3201    | 3201   | 32012   |
| Multilateral Operations                                                            | NO            | 0149                   | 0149           | 0152          |               | 0077          | 0025        | 0133          | 2000    | 0201  | 0201  | 0201  | 0201  | 0201  | 0_01   | 0201   | 0201     | ) 0201    | 0201    | 0201    | 0201   | 0201    |
| CO2 Emissions from Biomass                                                         |               | 4641                   | 4641           | 5869          | 7090          | 7696          | 8199        | 9114          | 9647    | 0     | 0     | 0     | 0     | 0     | 0      | 0      | 0        | ) 0       | 0       | 0       | 0      | 0       |
|                                                                                    |               | 7041                   | 10 11          | 0000          |               |               | 5.55        | 0.14          | 0017    |       | Ů     | -     | Ū     | -     |        |        | Ľ        | ľ         | Ů       | 0       | Ů      | -       |
| Corrections (not inclu ded above):                                                 |               |                        |                |               |               |               |             |               |         |       |       |       |       |       |        |        |          |           |         |         |        |         |
| CO2 emissions related to Net Electricity Import                                    | (10)          | 6288                   | 6288           | -690          | 659           | -375          | -1608       | -6869         | -2240   | 1140  | -6106 | -5009 | -6749 | -5498 | -1991  | -3087  | -3434    | 4 -4152   | -4820   | -2001   | -2658  | -2546   |
| CO2 emissions related to Temperature                                               | (11)          | 1768                   | 1768           | 253           | 1120          | 28            | 721         | 334           | 401     | 424   | 0     | 0     | 0     | 0     | 0      | 0      | 0        | 0 0       | 0       | 0       | 0      | 0       |
| Notes:                                                                             |               |                        |                |               |               |               |             |               |         |       |       |       |       |       |        |        |          |           |         |         |        |         |
| (1): Boilers, gas turbines, stationary engines                                     | (7): Window   | v plate production, Re | esearch labora | atories and R | unning shoes  | 5             |             |               |         |       |       |       |       |       |        |        |          |           |         |         |        |         |
| (2): Industry mobile sources and machinery                                         | (8): Other F  | roducts, Manufacture   | e and Process  | ing such as   | vessels, vehi | cles, machine | ry, wood, i | food and grap | hic     |       |       |       |       |       |        |        |          |           |         |         |        |         |
| (3): Military mobile combustion of fuels                                           | (9): Gasifica | ation of biogas        | v Evno-t       |               |               |               |             |               |         |       |       |       |       |       |        |        |          |           |         |         |        |         |
| (+). Glass Production<br>(5): Catalysts/Fertilizers, Pesticides and Sulphuric acid | (10): minus   | rature deviation from  | a normal vee   | r based op d  | earee davs    |               |             |               |         |       |       |       |       |       |        |        |          |           |         |         |        |         |
| (6): PFC used as detergent                                                         | NO: Not occur | ring / NE: Not estir   | nated / NA     | Not applica   | ble / IE: Inc | cluded elsewh | iere        |               |         |       |       |       |       |       |        |        |          |           |         |         |        |         |
|                                                                                    |               |                        |                |               |               |               |             |               |         |       |       |       |       |       |        |        |          |           |         |         |        |         |

### Table 10.9 Trends in greenhouse gas (GHG) emissions and distributions by gases and sectors.

| GHG emissions and projections (Gg CO <sub>2</sub> equiv | alents)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KP Base Year           | 1990          | 1995            | 2000          | 2001      | 2002        | 2003         | 2004        | 2005  | 2006  | 2007          | 2008           | 2009          | 2010              | 2011            | 2012     | 2008-12 | 2013-17       | 2020         | 2025     | 2030  |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------|-----------------|---------------|-----------|-------------|--------------|-------------|-------|-------|---------------|----------------|---------------|-------------------|-----------------|----------|---------|---------------|--------------|----------|-------|
| Distribution by gases (%):                              | Technicity         RP Base Year         1990         1995         2000         2001         2002         2003         2004         2005         2007         2008         2009         2010           76.0         76.3         79.2         77.8         78.4         78.7         80.3         79.2         77.6         81.0         81.3         81.0         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8         79.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |               |                 |               |           |             |              |             |       |       |               |                |               |                   |                 |          |         |               |              |          |       |
|                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76.0                   | 76.3          | 79.2            | 77.8          | 78.4      | 78.7        | 80.3         | 79.2        | 77.6  | 81.0  | 81.0          | 81.3           | 81.0          | 79.8              | 80.3            | 80.7     | 80.6    | 81.4          | 81.3         | 80.8     | 80.4  |
| CH4                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8,2                    | 8,2           | 7,9             | 8,6           | 8,6       | 8,7         | 8,1          | 8,5         | 9,5   | 8,1   | 7,9           | 7,8            | 7,9           | 8,5               | 8,2             | 8,0      | 8,1     | 7,8           | 8,2          | 8,4      | 8,6   |
| N 20                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15,3                   | 15,3          | 12,5            | 12,5          | 11,9      | 11,5        | 10,7         | 11,1        | 11,4  | 9,7   | 9,8           | 9,6            | 9,8           | 10,3              | 10,2            | 10,0     | 10,0    | 9,8           | 10,1         | 10,4     | 10,7  |
| HFCs                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,3                    | 0,0           | 0,3             | 0,9           | 0,9       | 1,0         | 0,9          | 1,1         | 1,3   | 1,2   | 1,3           | 1,3            | 1,3           | 1,3               | 1,2             | 1,1      | 1,2     | 0,8           | 0,3          | 0,3      | 0,3   |
| PFCs                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,0                    | 0,0           | 0,0             | 0,0           | 0,0       | 0,0         | 0,0          | 0,0         | 0,0   | 0,0   | 0,0           | 0,0            | 0,0           | 0,0               | 0,0             | 0,0      | 0,0     | 0,0           | 0,0          | 0,0      | 0,0   |
| SF6                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,2                    | 0,1           | 0,1             | 0,1           | 0,0       | 0,0         | 0,0          | 0,0         | 0,1   | 0,0   | 0,1           | 0,1            | 0,1           | 0,1               | 0,1             | 0,2      | 0,1     | 0,2           | 0,1          | 0,1      | 0,1   |
| Total                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0, 100                 | 100,0         | 0, 100          | 100,0         | 100,0     | 0, 100      | 100,0        | 100,0       | 100,0 | 100,0 | 100,0         | 100,0          | 100,0         | 100,0             | 100,0           | 0, 100   | 0, 100  | 100,0         | 100,0        | 100,0    | 100,0 |
| Industrial gases (HFCs+PFCs+SF6)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,5                    | 0,1           | 0,4             | 1,0           | 1,0       | 1,0         | 1,0          | 1,2         | 1,4   | 1,2   | 1,3           | 1,3            | 1,3           | 1,4               | 1,3             | 1,3      | 1,3     | 1,0           | 0,4          | 0,4      | 0,4   |
| Trends relative to the KP base year 1990/95:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |               |                 |               |           |             |              |             |       |       |               |                |               |                   |                 |          |         |               |              |          |       |
| C02                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 100           | 115             | 101           | 104       | 103         | 113          | 102         | 110   | 107   | 99            | 101            | 102           | 104               | 104             | 99       | 95      | 92            |              |          |       |
| CH4                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 100           | 106             | 103           | 106       | 105         | 105          | 101         | 97    | 96    | 97            | 96             | 94            | 96                | 92              | 93       | 91      | 91            |              |          |       |
| N 20                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 100           | 90              | 81            | 75        | 65          | 64           | 64          | 64    | 63    | 64            | 62             | 62            | 61                | 61              |          |         |               |              |          |       |
| HFCs                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 0             | 100             | 278           | 297       | 309         | 319          | 344         | 374   | 385   | 408           | 410            | 401           | 392               | 369             | 340      | 382     | 246           | 78           | 78       | 78    |
| PFCs                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 2009          | 1914            | 1839          | 1773      | 1704        | 1848         | 1455        | 1112  | 1112  | 1112          |                |               |                   |                 |          |         |               |              |          |       |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 34            | 34              | 34            | 64        | 107         | 55           | 104         | 55    | 55    | 55            |                |               |                   |                 |          |         |               |              |          |       |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 100           | 110             | 98            | 101       | 99          | 107          | 98          | 88    | 103   | 102           | 102            | 100           | 94                | 96              | 96       | 98      | 97            | 93           | 89       | 8/    |
| Industrial gases (HFCS+PFCS+SF6)                        | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                    | 14            | 100             | 209           | 215       | 221         | 229          | 245         | 265   | 272   | 287           | 288            | 282           | 276               | 271             | 265      | 277     | 201           | 72           | 72       | 72    |
| Distribution by IPCC main sector categories:            | <b>T</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                      |               |                 |               |           |             |              |             |       |       |               |                |               |                   |                 |          |         |               |              |          |       |
| 1. Energy                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75                     | 75            | 79              | 77            | 78        | 78          | 80           | 79          | 77    | 81    | 80            | 81             | 80            | 79                | 80              | 80       | 80      | 81            | 81           | 80       | 80    |
| 2. Industrial Processes                                 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                      | 3             | 4               | 5             | 5         | 5           | 4            | 4           | 4     | 4     | 4             | 4              | 4             | 4                 | 4               | 4        | 4       | 4             | 3            | 3        | 3     |
| A Agriculture                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                      | 0             | 0               | 0             | 0         | 0           | 0            | 0           | 0     | 0     | 0             | 0              | 0             | 0                 | 0               | 0        | 0       | 0             | 0            | 0        |       |
| A Wasta                                                 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19                     | 19            | 16              | 16            | 15        | 15          | 14           | 15          | 16    | 14    | 14            | 13             | 14            | 15                | 14              | 14       | 14      | 13            | 14           | - 14     |       |
| T ofal                                                  | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                    | 100           | 100             | 100           | 100       | ∠<br>100    | 100          | 2<br>100    | 2     | 100   | ∠<br>100      | 2              | 2             | 100               | 100             | 2        | 100     | 100           | 100          | 100      | 100   |
| Trands relative to the KP base year 1990/05             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 100           | 100             | 100           | 100       | 100         | 100          | 100         | 100   | 100   | 100           | 100            | 100           | 100               | 100             | 100      | 100     | 100           | 100          | 100      | 100   |
| Trends relative to the KP base year 1990/95:            | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                    | 100           | 445             | 101           | 101       | 100         |              | 100         | 0.0   |       | 100           | 110            | 107           | 00                | 100             | 100      | 101     | 101           | 100          | 05       |       |
| 1. Energy<br>2. Industrial Processos                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 100           | 115             | 101           | 104       | 103         | 114          | 103         | 90    | 100   | 109           | 110            | 107           | 100               | 102             | 102      | 104     | 104           | 100          | 95       | 92    |
| 3. Solvent and Other Product Use                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 100           | 106             | 130           | 133       | 129         | 70           | 124         | 100   | 100   | 110           | 110            | 110           | 001               | 100             | 107      | 109     | 90            | 01           | 01       | 00    |
| 4 Agriculture                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 100           | 90              | 81            | 81        | 70          | 70           | 77          | 75    | 75    | 7/            | 73             | 73            | 72                | 72              | 71       | 72      | 70            | 68           | 67       | 67    |
| 6. Waste                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 100           | 100             | 96            | 96        | 97          | 98           | 90          | 92    | 91    | 89            | 89             | 87            | 87                | 87              | 88       | 88      | 89            | 91           | 93       | 95    |
| Tota                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 100           | 110             | 98            | 101       | 99          | 107          | 98          | 88    | 103   | 102           | 102            | 100           | 94                | 96              | 96       | 98      | 97            | 93           | 89       | 87    |
| Economic sector categories* - GHG emissions (G          | a CO2 ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uivalents)             |               |                 |               |           |             |              |             |       |       |               |                |               |                   |                 |          |         |               |              |          |       |
| Energy                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26620                  | 26620         | 32758           | 26254         | 27612     | 27672       | 32540        | 26578       | 19588 | 30/83 | 29564         | 30103          | 28820         | 24606             | 26031           | 26465    | 27223   | 27380         | 24520        | 21803    | 2021/ |
| Transport                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10650                  | 10650         | 12229           | 12561         | 12539     | 12722       | 13175        | 13589       | 13792 | 14032 | 14145         | 14207          | 14209         | 14146             | 14226           | 14314    | 14220   | 14619         | 15189        | 15560    | 15891 |
| Agriculture, forestry and fisheries                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15780                  | 15780         | 14505           | 13101         | 13075     | 12675       | 12389        | 12214       | 12198 | 12135 | 12057         | 11974          | 11919         | 11874             | 11819           | 11681    | 11854   | 11465         | 11234        | 11048    | 11042 |
| Business                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9518                   | 9237          | 9986            | 10464         | 10426     | 10005       | 10102        | 10087       | 9363  | 9359  | 9415          | 9449           | 9477          | 9506              | 9503            | 9485     | 9484    | 9278          | 8862         | 8872     | 8859  |
| Domestic sector                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5208                   | 5208          | 5288            | 4319          | 4561      | 4335        | 4343         | 4231        | 4342  | 4164  | 3981          | 3853           | 3752          | 3664              | 3575            | 3469     | 3663    | 3257          | 3038         | 2912     | 2913  |
| Waste                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1547                   | 1547          | 1548            | 1478          | 1479      | 1502        | 1515         | 1394        | 1423  | 1402  | 1384          | 1370           | 1354          | 1349              | 1353            | 1358     | 1357    | 1374          | 1405         | 1438     | 1466  |
| T otal                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69323                  | 69042         | 76314           | 68177         | 69693     | 68910       | 74064        | 68092       | 60705 | 71575 | 70547         | 7 10 46        | 69 53 1       | 6 51 46           | 66 508          | 66772    | 67800   | 67371         | 6 42 57      | 61634    | 60386 |
| Distribution by economic sectors (%):                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |               |                 |               |           |             |              |             |       |       |               |                |               |                   |                 |          |         |               |              |          |       |
| Energy                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38                     | 39            | 43              | 39            | 40        | 40          | 44           | 39          | 32    | 43    | 42            | 42             | 41            | 38                | 39              | 40       | 40      | 41            | 38           | 35       | 33    |
| Transport                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15                     | 15            | 16              | 18            | 18        | 18          | 18           | 20          | 23    | 20    | 20            | 20             | 20            | 22                | 21              | 21       | 21      | 22            | 24           | 25       | 26    |
| Agriculture, forestry and fisheries                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23                     | 23            | 19              | 19            | 19        | 18          | 17           | 18          | 20    | 17    | 17            | 17             | 17            | 18                | 18              | 17       | 17      | 17            | 17           | 18       | 18    |
| Business                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                     | 13            | 13              | 15            | 15        | 15          | 14           | 15          | 15    | 13    | 13            | 13             | 14            | 15                | 14              | 14       | 14      | 14            | 14           | 14       | 15    |
| Domestic sector                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                      | 8             | 7               | 6             | 7         | 6           | 6            | 6           | 7     | 6     | 6             | 5              | 5             | 6                 | 5               | 5        | 5       | 5             | 5            | 5        | 5     |
| Waste                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                      | 2             | 2               | 2             | 2         | 2           | 2            | 2           | 2     | 2     | 2             | 2              | 2             | 2                 | 2               | 2        | 2       | 2             | 2            | 2        | 2     |
| Total                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 100           | 100             | 100           | 100       | 100         | 100          | 100         | 100   | 100   | 100           | 100            | 100           | 100               | 100             | 100      | 100     | 100           | 100          | 100      | 100   |
| Irends relative to the KP base year 1990/95:            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                      |               |                 |               |           |             |              |             |       |       |               |                |               |                   |                 |          |         |               |              |          |       |
| Energy                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 100           | 123             | 99            | 104       | 104         | 122          | 100         | 74    | 115   | 111           | 113            | 108           | 92                | 98              | 99       | 102     | 103           | 92           | 82       | 76    |
| Transport                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 100           | 115             | 118           | 118       | 119         | 124          | 128         | 130   | 132   | 133           | 133            | 133           | 133               | 134             | 134      | 134     | 137           | 143          | 146      | 149   |
| Agriculture, forestry and fisheries                     | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                    | 100           | 92              | 83            | 83        | 80          | 79           | 77          | 77    | 77    | 76            | 76             | 76            | 75                | 75              | 74       | 75      | 73            | 71           | 70       | 70    |
| Demostie sector                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 97            | 105             | 110           | 110       | 105         | 106          | 106         | 98    | 98    | 99            | 99             | 100           | 100               | 100             | 100      | 100     | 97            | 93           | 93       | 93    |
| Wasto                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 100           | 102             | 00            | 00        | 03          | 00           | 01          | 03    | 00    | /0            | 74<br>90       | 07            | 70                | 09              | 0/       | 70      | 03            | 01           | 02       | 00    |
| Total                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 100           | 110             | 90            | 10.1      | 97          | 107          | 90          | 92    | 103   | 102           | 10.2           | 100           | 94                | 96              | 00<br>96 | 98      | 97            | 03           | 80       | 87    |
| Trando relativo to the KP base year 1990/95 if adju     | ictmonte f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | for electricity        | oxoband       | in and to       | morati        | ro variat | ione ar     | o takon      | into aco    | ount  | 100   | 101           | 101            | 100           |                   | 50              | 50       |         | 51            |              |          |       |
| Trends relative to the KP base year 1990/95 h adju      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tor electricity        | exchange      | je and te       | mperatu       |           |             | e taken      | Into acc    | ount  | 70    | 74            | 00             | 07            | 05                | 00              | 00       | 07      | 05            | 05           |          |       |
| Energy<br>Transport                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 100           | 93              | 110           | 110       | 110         | 104          | 100         | 120   | 100   | 122           | 100            | 102           | 100               | 124             | 124      | 124     | 107           | 142          | 146      | 140   |
| Agriculture forestry and fisheries                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                    | 100           | 115             | 110           | 110       | 90          | 70           | 77          | 77    | 77    | 133           | 76             | 76            | 75                | 75              | 74       | 75      | 137           | 71           | 70       | 70    |
| Business                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                    | 97            | 105             | 110           | 110       | 105         | 106          | 106         | 98    | 98    | 99            | 99             | 100           | 100               | 100             | 100      | 100     | 97            | 93           | 93       |       |
| Domestic sector                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                    | 100           | 102             | 83            | 88        | 83          | 83           | 81          | 83    | 80    | 76            | 74             | 72            | 70                | 69              | 67       | 70      | 63            | 58           | 56       | 56    |
| Waste                                                   | 100 100 102 83 88 83 83 81 83 80 76<br>100 100 100 96 96 97 98 90 92 91 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |               |                 |               |           |             |              |             |       |       |               |                | 87            | 87                | 87              | 88       | 88      | 89            | 91           | 93       | 95    |
| Total                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                    | 100           | 98              | 90            | 90        | 88          | 87           | 86          | 80    | 85    | 85            | 83             | 83            | 82                | 82              | 82       | 82      | 81            | 80           | 76       | 75    |
| * Definition of economic sectors                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |               |                 |               |           | o urces/Sev | ctors in the | CREUPCC #   | ormat |       |               |                |               |                   |                 |          |         |               | <u> </u>     | <u>`</u> |       |
| Energy                                                  | So urces/Sectors in the CRFIPCC format Includes extraction, conversion, and distribution. 1A1 Fuel combustion activities. 1E Military is included here. 1A3 Transcort fuel combustion 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |               |                 |               |           |             |              |             |       |       |               |                | missions from | n fuels.          |                 |          |         |               |              |          |       |
| Transport                                               | Includes extraction, conversion, and distribution. 1A1 Fuel combustion activities. 1B<br>Military is included here. 1A3 Transport (fuel combustion ) 1A2<br>III UIC is not leaded here of the Kurte Persterel 4.4.4 Evaluation is activities in activities in activities in activities of the fuel operation is activities in activities i |                        |               |                 |               |           |             |              |             |       |       |               |                | iel combustio | n in military tra | ansport).       |          |         |               |              |          |       |
| Agriculture, forestry and fisheries                     | Military is included here.         1A3 Transport (fuel combustion)         1A5           LULUCE is not included here to the Kyoto Protocol.         1A4c Fuel combustion in agriculture, forestry, and fisheries.         4. Agriculture forestry, and fisheries.           Includes production, building, construction, service, trade, F-gases and solvents.         1A2 Fuel combustion in production and building/construction.         1A4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |               |                 |               |           |             |              |             |       |       |               | 4. Agriculture |               |                   |                 |          |         |               |              |          |       |
| Business                                                | LULUOPs not included here cf. the Kyoto Protocol. 1446 Fuel combustion in agroductione, forestry, and tisheres. 4. Agr<br>Includes production, building, construction, service, trade, F-gases and solvents. 142 Fuel combustion in production and building/construction. 144a<br>1446 Fuel combustion in households.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                 |               |           |             |              |             |       |       | 1A4a Fuel con | nbustion in co | mmerce and    | service.          | 2. Industrial p | rocesses |         | 3. Use of orc | ganic solven | ts.      |       |
| Domestic sector                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |               |                 |               | 1         | A4b Fuel co | ombustion in | households. |       |       |               |                |               |                   |                 |          |         |               |              |          |       |
| Waste                                                   | Includes land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fills and sewage treat | ment. Inciner | ation is includ | led under ene | rgy. 6    | . Waste     |              |             |       |       |               |                |               |                   |                 |          |         |               |              |          |       |

# NERI National Environmental Research Institute

DMU Danmarks Miljøundersøgelser

| At NERI's website www.neri.dk<br>you'll find information regarding ongoing<br>research and development projects.<br>Furthermore the website contains a database<br>of publications including scientific articles, reports,<br>conference contributions etc. produced by<br>NERI staff members.         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| www.neri.dk                                                                                                                                                                                                                                                                                            |
| Management<br>Personnel and Economy Secretariat<br>Monitoring, Advice and Research Secretariat<br>Department of Policy Analysis<br>Department of Atmospheric Environment<br>Department of Marine Ecology<br>Department of Environmental Chemistry and Microbiology<br>Department of Arctic Environment |
| Monitoring, Advice and Research Secretariat<br>Department of Marine Ecology<br>Department of Terrestrial Ecology<br>Department of Freshwater Ecology                                                                                                                                                   |
| Department of Wildlife Ecology and Biodiversity                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                        |

## **NERI Technical Reports**

NERI's website www.neri.dk contains a list of all published technical reports along with other NERI publications. All recent reports can be downloaded in electronic format (pdf) without charge. Some of the Danish reports include an English summary.

#### Nr./No. 2006

- 600 Assessing Potential Causes for the Population Decline of European Brown Hare in the Agricultural Landscape of Europe – a review of the current knowledge. By Olesen, C.R. & Asferg, T. 30 pp.
- 599 Beregning af naturtilstand ved brug af simple indikatorer. Af Fredshavn, J.R. & Ejrnæs, R. 93 s.
- 598 Klimabetingede effekter på marine økosystemer. Af Hansen, J.L.S. & Bendtsen, J. 50 s.
- 597 Vandmiljø og Natur 2005. Tilstand og udvikling faglig sammenfatning. Af Boutrup, S. et al. 50 s.
- 596 Terrestriske Naturtyper 2005. NOVANA. Af Bruus, M. et al. 99 s.
- 595 Atmosfærisk deposition 2005. NOVANA. Af Ellermann, T. et al. 64 s.
- 594 Landovervågningsoplande 2005. NOVANA. Af Grant, R. et al. 114 s.
- 593 Smådyrfaunaens passage ved dambrugsspærringer. Af Skriver, J. & Friberg, N. 33 s.
- 592 Modelling Cost-Efficient Reduction of Nutrient Loads to the Baltic Sea. Model Specification Data, and Cost-Fynctions. By Schou, J.S. et al. 67 pp.
- 591 Økonomiske konsekvenser for landbruget ved ændring af miljøgodkendelsen af husdyrbrug. Rapport fra økonomiudredningsgruppen. Af Schou, J.S. & Martinsen, L. 55 s.
- 590 Fysisk kvalitet i vandløb. Test af to danske indices og udvikling af et nationalt indeks til brug ved overvågning i vandløb. Af Pedersen, M.L. et al. 44 s.
- 589 Denmark's National Inventory Report Submitted under the United Nations Framework Convention on Climate Change, 1990-2004. Emission Inventories. By Illerup, J.B. et al. 554 pp.
- 588 Agerhøns i jagtsæsonen 2003/04 en spørgebrevsundersøgelse vedrørende forekomst, udsætning, afskydning og biotoppleje. Af Asferg, T., Odderskær, P. & Berthelsen, J.P. 47 s.
- 587 Målinger af fordampning af pesticider fra jord og planter efter sprøjtning. Af Andersen, H.V. et al. 96 s.
- 586 Vurdering af de samfundsøkonomiske konsekvenser af Kommissionens temastrategi for luftforurening. Af Bach, H. et al. 88 s.
- 585 Miljøfremmede stoffer og tungmetaller i vandmiljøet. Tilstand og udvikling, 1998-2003. Af Boutrup, S. et al. 140 s.
- 584 The Danish Air Quality Monitoring Programme. Annual Summary for 2005. By Kemp, K. et al. 40 pp.
- 583 Naturgenopretning af søerne i Vejlerne en vurdering af effekterne på yngle- og trækfugle. Af Clausen, P., Holm, T.E. & Kjeldsen, J.P. 122 s.
- 582 Arter 2004-2005. NOVANA. Af Søgaard, B., Pihl, S. & Wind, P. 145 s.
- 581 Physical and biological oceanography in West Greenland waters with emphasis on shrimp and fish larvae distribution. By Söderkvist, J., Nielsen, T.G. & Jespersen, M. 54 pp.
- 580 Habitatmodellering i Ledreborg Å. Effekt af reduceret vandføring på ørred. Af Clausen, B. et al. 58 s.
- 579 Aquatic and Terrestrial Environment 2004. State and trends technical summary. By Andersen, J.M. et al. 136 pp.
- 578 Limfjorden i 100 år. Klima, hydrografi, næringsstoftilførsel, bundfauna og fisk i Limfjorden fra 1897 til 2003. Af Christiansen, T. et al. 85 s.
- 577 Limfjordens miljøtilstand 1985 til 2003. Empiriske modeller for sammenhæng til næringsstoftilførsler, klima og hydrografi. Af Markager, S., Storm, L.M. & Stedmon, C.A. 219 s.
- 576 Overvågning af Vandmiljøplan II Vådområder 2005. Af Hoffmann, C.C. et al. 127 s.
- 575 Miljøkonsekvenser ved afbrænding af husdyrgødning med sigte på energiudnyttelse. Scenarieanalyse for et udvalgt opland. Af Schou, J.S. et al. 42 s.
- 574 Økologisk Risikovurdering af Genmodificerede Planter i 2005. Rapport over behandlede forsøgsudsætninger og markedsføringssager.
   Af Kjellsson, G., Damgaard, C. & Strandberg, M. 22 s.
- 573 Monitoring and Assessment in the Wadden Sea. Proceedings from the 11. Scientific Wadden Sea Symposium, Esbjerg, Denmark, 4.-8. April 2005. By Laursen, K. (ed.) 141 pp.
- 572 Søerne i De Vestlige Vejler. Af Søndergaard, M. et al. 55 s.

This report contains a description of models and background data for projection of  $CO_2$ ,  $CH_4$ ,  $N_2O$ , HFCs, PFCs and SF6 for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts of activity rates are used in the models for those sectors for which the forecasts are available, i.e. the latest official forecast from the Danish Energy Authority. The emission factors refer to international guidelines and some are country-specific and refer to Danish legislation, Danish research reports or calculations based on emission data from a considerable number of plants. The projection models are based on the same structure and method as the Danish emission inventories in order to ensure consistency.

National Environmental Research Institute University of Aarhus - Denmark ISBN 978-87-7772-973-7 ISSN 1600-0048