NMR-Workshop on Particles in Nordic Urban Areas - Helsingör 7. November 2007

PM10 Health Effect Equivalent New Approach to a Health Hazard Oriented PM-Characterization

A.Mayer / TTM

A.Mayer - TTM Independent Consultant on Emission Reduction of IC-Engines

TTM is responsible on behalf of Swiss EPA and SUVA for

- VERT Verification of Particle Filter Systems
- Quality Control of Filter Retrofits in Switzerland
- Research and Development in International Projects
- Implementation of Emission Reduction Measures (Germany, Austria, Poland, Italy, California, Canada, Chile, Korea, Japan, Czechia ..),
- Organization of Seminars and Conferences
- 35 SAE-papers and 2 books published 2004/5 on "Elimination of Combustions Generated Particles"
- SAE-fellowship 2004
- Award of Swiss Cancer Ligue 2006

Ambient Air Pollution is defined by law as PM10

PM 10 = overall mass of ambient aerosol below 10 μm

and here my Question:

Is it scientifically permitted to use the sheer mass of an unknown mix of substances (whether it is PM10 or PM2.5 or even PM1) as a **metric for human health hazard ?**

Average CH-Compositions in Winter

Milan 27.June 2007

Los Angeles (Froines 2006)

Honolulu / Hawai (artificial sample)

PM10 claims:

1 g Salt = 1 g Sand = 1 g Soot !

1 g = 1 g

yes, but with respect to any physical, chemical, biological effects we also must consider the properties of the substance

→ Something must be changed

orsince we are in Prince Hamlet's hometown

Is 1 g Salt = 1 g Sand = 1 g Soot ?

1 g = 1 gYes but with respect to any physical, chemical, biological effects we also must consider the properties of the substance

"something is rotten in the state of Denmark, and not only in Denmark Which physical and chemical properties make a particle more or less dangerous for human health ?

1.

Can we neglect the Influence of the Particle Size and its Mobility ?

Aerosol Number/Size – Distribution City (Zürich) and Coutry (Zürcher Oberland)

Diesel Particles

Quelle: METZ, BMW

Number- and Mass-Distribution

Volumen bzw. Masse der Aerosolpartikel wird durch die Partikel über 100nm bestimmt, die Anzahl durch die feinen und ultrafeinen Partikel

Average Diurnal Traffic and Emissions

Figure courtesy of J.Harkema

Macrophages in vitro: Laser Scanning Microscopy

1-μm Polystyrene particles

78-nm Polystyrene particles

B. Rothen-Rutishauser In: Geiser et al., EHP (in press)

and this is not new at all

- Lambrechts: measurement of particles size 1916 performed
- Staub 1936: importance of particles < 0.5 μm emphasized
- Pneumoconiosis Conference at Johannesburg 1959:
 agreement on size, number concentration, surface
 importance of particles below 0.4 µm
- DIN EN 481: 1993
- BIA (MAK-Lieferung 1998): particle size 10-200 nm
- VERT 1998: 20-300 nm

2.Can we neglect the different chemical properties of the particle substances ?

pollutant	threshold concentration [µg/m³]	inverse thres- hold conc. [per µg/m³]	unit risk [per pg/m³]
Particulate matter	5	0.200	
Solid particulate matter	3.5	0.286	100.00
NO2	40	0.025	
Ethylbenzene	1000	0.001	
Formaldehyde	10	0.100	0.27
Acetaldehyde	300	0.003	2.20
Platinum	0.015	66.667	
Benzene			9.20
Benzo[a]pyrene			70'000.00
1,3-butadiene			4.50

Table 1: Threshold concentration, inverse threshold concentration, and unit risk values from UBA (1999).

CNG/Diesel: Particle Samples analysed for Engine Wear Elements

3. Can we neglect the influence of solubility ?

- Soot particles are insoluble
- and most metal oxides are nearly insoluble
- → remain solid particles even after penetrated into blood or brain; local concentration remains high;
- \rightarrow HE is defined by the local number concentration

3. Can we neglect the influence of solubility ?

Nitrates, Sulfates, Ammonium, Seasalt have a high to very high solubility in water, even higher due to continuous clearing

- → local concentration disappears quickly by dilution;
- → HE is defined by the overal mass concentration (per kg bodyweight)

3. Can we neglect the influence of solubility ?

Organic Matter OM may also be dissolved quite quickly in the liquid layers covering the upper airways due to surfactant and continuous clearing

→ local concentration disappears quickly by dilution;
 → HE is defined by the overal mass concentration
 (per kg bodyweight)

and this is not new at all

- BIA (MAK-Lieferung 1998) requires: "only insoluble particles shall be included"
- VERT 1998 defines: "Feststoffpartikel 20-300 nm"
- ECE-PMP 2004: volatiles to be separated by heat treatment at 300 °C and dilution
- MAK 1970: dust and smoke contain solid particles only, fog contains liquid phase, aerosol is the general term containing both phases

Conclusion

- Particle Size matters
- Particle Substance matters
- Particle Solubility matters

Why not weighing the effects of different substances included in PM10 before using it as a parameter for the health hazard

weighing is a well established approach

TEQ Sum to weigth the Influence of 75 Isomeres in a Dioxin Sample PCDD: only 7 out of 75 isomeres are highly toxic

Source: N. Heeb, EMPA (2005) Haus der Technik, München Toxizitätsäquivalente DIOXINE

	BGA ^[30]	NATO (I-TEF) ^[31]
2,3,7,8-Cl4DD	1	1
1,2,3,7,8-Cl₅DD	0,1	0,5
2,3,7,8-subst. Cl ₆ DD	0,1	0,1
1234678-CI7DD	0,01	0,01
Cl₀DD	0,001	0,001
2,3,7,8-Cl₄DF	0,1	0,1
2,3,4,7,8-Cl₅DF	0,01	0,05
2,3,7,8-subst. Cl₀DF	0,01	0,01
2,3,7,8-subst. Cl ₇ DF	0,01	0,01
andere Cl ₇ DF	0,001	0
Cl ₈ DF	0,001	0,001
andere PCDD und PCDF	0,01	0

TEQ Sum to weigh the influence of PAH compounds in a PAH sample

Messtelle	Siedepunkt	TEF
Fluoranthen	384	0.001
Pyren	364	0.001
Benz(a)anthracen	435	0.1
Chrysen	441	0.01
Benzo(b)fluoranthen	481	0.1
Benzo(j)fluoranthen	481	0.1
Benzo(k)fluoranthen	481	0.1
Benzo(a)pyren	496	1
Indeno(1,2,3,cd)pyren	534	0.1
Dibenzo(ah)anthracen	535	1
Benzo(ghi)perylen	542	0.01

Why not put a **Number** on each PM10 compound for

- influence of size
- Influence of solubility
- Influence of substance toxicity

PM10 Substance Classes

• Carbon:

- EC (fine, coarse)
- OM / OC (overlap with pPAH)
- pPAH

• Inorganics:

- NH4+
- NO3-
- SO4-

• Metals and Metaloxides :

- transition metals (all; overlap with individual metal oxides)
- FeO
- MgO
- CaO
- precious metals (all; maybe individual: Pt, Pd, Rh)

• Minerals:

- mineral dust (silicates, incl. Al, Mg, ...

Toxicity Contributors

along the way of the particle entering the organisme

process	parameters	quantify	
Location of	Diffusion	Size,	
aerosol deposition		Hygroscopicity	
Contact with body	Solubility in water	solubility	
surface	in Mucus, Surfactants?	Lipophility	
Translocation	Cell membrane penetration; Phagocytosis	Size	
Interaction	Overall Toxixity	MAK (Threshold)	
	Bioavailability	?	
	Cytotoxicity	?	
	Mutagenicity	?	
	Carcinogenicity	?	
Excretion	Biopersistence	Decay Time	

HEQ Index Value

Source: M.Kasper, ETH-NPC 2007

How can we numerically address the relative importance of each of these properties characterizing elements of toxicity ?

- size
- solubility
- overall toxicity

1. Size

We propose to use Alveolar Deposition Probability - normalized

- *Diesel Soot 20-300 nm* = 1
- *Metal Oxide Partikel 20-300 nm* = 1
- Fine mineral dust 2-3 $\mu m = 0.1$
- resuspended agglomerated dust < 0.1

Alveolar Deposition of traffic related Particles

respir depos fct

Dp [nm]

2. Solubility

We propose to use 1/ solubility (water) - normalized

- Diesel Soot: 1 (insoluble)
- Metal Oxide Partikel : 1
- Mineral Dust : 1
- OM (PAH): 1 ¹⁾
- Nitrates: 0.01
- Sulfates: 0.1
- Sea Salt: 0.001

1) We assume that OM-solubility will be much higher in actual airways because of surfactents and also due to the rapid clearing process

3. Toxicity

We propose to use 1/MAK - normalized

- Diesel Soot = 1
- Coarse Metal Oxide Particles = 0.1
- Ultrafine Metal Particles = 1 (- 10 Stoeger)
- Nitrates = 0.1 (?)
- Sulfates = 0.1
- PAH Benz(a)pyren = 50
- Mineral Dust = 0.1
- Sea Salt = 0.01 (no MAK)
- Water = 0.001 (no MAK)

Alternatively Unit Risk-factors could be used or weighing factors by CML (Heijungs 1992), WHO, IARC, OEHHA, HEI, EPA, UBA

Just an Example

PM10-HEQ Influence Factors Example

PM10- Compounds	EC < 500 nm	EC > 500 nm	Metals Minerals > 500 nm	Metals <100 nm	Sea Salt	ом	Benz(a) Pyren	Ammonia	Nitrate	Sulfate	Water
Mass %	15	2	10	2	15	20	0.01	10	10	10	6
Solubility	1	1	1	1	0.001	0.2	1	0.01	0.01	0.1	0.0001
Mobility	1	0.1	0.1	1	1	1	1	1	1	1	1
Toxicity	1	0.1	0.1	10	0.01	0.1	50	0.1	0.1	0.1	0.001
HEQ -Index	1	0.01	0.01	10	0.00001	0.02	50	0.001	0.001	0.01	0.000001
PM10-HEQ	15	0.02	0.1	20	0.00015	0.4	0.5	0.01	0.01	0.1	0.000006

Example: only BC and metals remain important

PM10

PM10-HEQ

Zürich

Hawai

And why not use the same approach for tailpipe emissions ?

Measurement of Particle Mass PM at tailpipe acc. to legal procedure

Particulate Mass Samples upstream and downstream of a Bus Particle Filter

Hansen, Jensen, Ezerman (2001) Report 270-1-0019, Engine Technique Aarhus

And why not use the same approach for occupational health ?

Priority for Particle Elimination based on Occupational Health Limit Values

		Gas	Aerosols			
mg/Nm ³	CO	NO	NO ₂	SO ₂	PM = EC + OC	H ₂ SO ₄
Emissions	1000	2700	300	100	250	25
Limit Values						
SwitzerlandGermany	33	30	6	5	0.1 (EC) 0.1 (EC)	1
EC-TargetMSHA 2007			<0.6		0.16 (EC)	
Required Dilution	> 28	> 90	>50 (500)	> 20	> 2500	> 25

Summary

- PM10 (2.5, 1.0) is a misleading metric to characterize the Health Hasard of Air Pollution
- PM10 composition must be weighed to form a Health Effect Equivalent PM10-HEQ
- This is just a beginning –

proposal proposal

• A scientific group has been formed in Switzerland with

- Prof.P.Gehr Institute of Lung Anatomy / Uni Bern
- Prof.H.Burtscher Aerosol Research University Windisch
- Dr.Chr. Leuenberger and Dr. Heeb, EMPA, Chemists
- Dr.M Kasper, Aerosol Physicist and Dr.M.Schmitz, Biologist

• Scientific Contributions are very welcome

Further Information by TTM

- Nanoparticle Conference ETH Zürich
 www.nanoparticles.ethz.ch
- Particle Filter Seminar HDT
 <u>www.hdt.de</u>
- VERT Filter List
 www.buwal-umwelt.ch
- Database 4500 DPF in Switzerland
 <u>www.akpf.org</u>
- Book on DPF published 2005 by EXPERT
 <u>www.expert.de</u>
- 30 SAE-Papers and many other technical publications