NOVEL APPROACHES FOR MEASURING PHYSICAL AND CHEMICAL PROPERTIES OF PARTICULATE ORGANICS

Peter H. McMurry Particle Technology Laboratory epartment of Mechanical Engineering University of Minnesota

Urban Organic Aerosol Workshop,

Copenhagen, November 7, 2007

Topics To Be Discussed

•Measurement of physical/chemical properties of particulate organics

- -hygroscopicity
- -refractive index
- -density

•In-situ measurements of mass concentrations of volatile organics

•Chemical composition of organics emitted from biofuel combustion

Overarching Theme: New Measurement Methods

Acknowledgements

Students, Postdocs, and Senior Colleagues

Dabrina Dutcher, David Kittelson, Melissa Grose, Joakim Pagels, Kihong Park, Hiromu Sakurai, U Minnesota Paul Ziemann, Herb Tobias, UC Riverside Renyi Zhang, Alexei Khalizov: Texas A&M Funding

DOE, EPA, EPRI, NSF

Use of Tandem Methods to measure physical/chemical properties of particulate organics

-hygroscopicity, shape, refractive index and density

Tandem Measurement Techniques for Physical/Chemical Properties of Atmospheric POM

OC Water Uptake

TDMA + MOUDI (IC; OC/EC) + Thermodynamic Model

Water Uptake by Organics:

TDMA Measured - Thermodyamic Model for Inorganics

Dick et al., *JGR* **105**(D1):1471-1479, 2000.

TDMA Measurements of Water Uptake: Comparison with Thermodynamic Models

Dick et al., *JGR* **105**(D1):1471-1479, 2000.

Shape (Spherical or Nonspherical):

DMA + MALS (MultiAngle Light Scattering)

Multiangle Light Scattering (MALS) Detector

Measurement of angular-dependent light scattering by submicron particles as functions of size and relative humidity

Reference Aerosols (Shape)

- DOS (Dioctyl Sebacate)
 - Spherical Reference
 - 0% Nonspherical, $D_p \ge 0.4 \ \mu m$
- NaCl
 - Nonspherical Reference
 - 100% Nonspherical, $D_p \ge 0.4 \ \mu m$
 - Reduced distinction for $D_p = 0.2, 0.3 \ \mu m$; $\eta \sim 20 \%$

0.6 µm NaCl Cubes

Dick et al., *Measurement Sci. Technol.* **9**(2):183-196, 1998.

MALS 1: Distinguishing Spheres from Nonspheres (variabilities in *azimuthal* scattering)

Dick et al., *Measurement Sci. Technol.* **9**(2):183-196, 1998.

OC Refractive Index

TDMA + MALS

MALS 2: Determining Refractive Index for Spheres (Variabilities in Polar Scattering)

Wet 0.5 µm Dry 0.5 μm 08:58 August 11, 1995 (JD 223) 16:35 August 11, 1995 (JD 223) 10² Scattered Intensity [a. u.] Scattered Intensity [a. u.] 10² n=1.407 n=1.476 k=0.0001 k=0.0002 10¹ 10¹ 10[°] 10° 0.5 µm 0.5 µm RH = 63%RH = 6%10 10 30 0 60 90 120 150 180 0 30 60 90 120 150

 θ [degrees]

Dick et al., Aerosol Sci. Technol. 9(2):183-196, 1998.

180

 θ [degrees]

MALS Measurements in the Great Smoky Mountains show that the refractive index of OC equals *n*=1.45

Dick et al., AST **41**:549-569, 2007

Carbon Soot Density:

DMA + APM + TEM

Mass Classification with the APM

$$mr\omega^{2} = \frac{\pi d_{ve}^{3}}{6}\rho_{true}r\omega^{2} = neE_{APM}$$

Ehara et al., *JAS* **27**:**217-234**, 1996

Masses of 0.309 µm Mobility Diameter Atmospheric Particles (Atlanta, GA)

McMurry et al., *AST* **36**:227-238, 2002

Effective Density of Diesel Exhaust Particles (DEP) (DMA-APM)

Park et al., *ES&T* **37**:577-583, 2003

Material Density of Diesel Exhaust Particles (TDMA-APM-TEM)

Park et al., J.Nanoparticle Res. 62(2):267-272, 2004

In-Situ Measurements of Mass Concentrations for Engine Emissions that contain High Concentrations of Volatile Organics

> SMPS-APM (DMA-APM)

Park et al., Atmos. Environ. 37:1223-1230, 2003

Mass Concentrations of Diesel Exhaust Particles

Park et al., Atmos. Environ. 37:1223-1230, 2003

Particle Mass for Diesel Exhaust Particles John Deere engine, 50% load, 1400 rpm, 360 ppm fuel

Park et al., Atmos. Environ. 37:1223-1230, 2003

Number and Mass Distributions for Diesel Exhaust Aerosols. John Deere engine, 10% & 75% loads, 1400 rpm, 360 ppm S fuel, DR~17-22

Park et al., Atmos. Environ. 37:1223-1230, 2003

Filter and DMA-APM Mass Concentrations: Effect of a Catalytic Stripper.

John Deere engine, 10% load, 1400 rpm, 360 ppm S fuel, DR=17

Organic Carbon Sampling Errors: Quartz Filter Adsorption on MOUDI Impactor

MOUDI OC Measurements with 50 nm Stage Replacing Afterfilter

Novel Measurements of Organic Composition

-TDPBMS¹: Ziemann et al., UC Riverside Engine emissions

-ATOFMS²: Dutcher et al., UMN *Biofuel combustion*

¹Thermal Desorption Particle Beam Mass Spectrometer ²Aerosol Time of Flight Mass Spectrometer

Chemical and Physical Properties of Diesel Exhaust Nano Particles: Effect of CRT

Thermal Desorption Particle Beam Mass Spectrometer (TDPBMS)

Tobais et al., *ES&T* **35**:2233, 2001; Sakurai et al, *Atmos.Environ.* **37**:1199, 2003

Thermal Desorption Particle Beam Mass Spectrometry (TDPBMS) of DEPs without CRT (with Ziemann et al.)

Mass spectra are dominated by alkanes and are more similar to oil than to fuel.

A small amount of sulfuric acid was detected at higher engine loads.

Tobais et al., ES&T 35:2233, 2001; Sakurai et al, Atmos. Environ. 37:1199, 2003

Nano-MOUDI Measurements of DEP **Composition Downstream of CRT**

Aerodynamic Diameter (nm)

Grose et al., *ES&T*, doi:10.1021/es052267, 2007

Effect of CRT on Physical & Chemical Properties of Diesel Exhaust Particles (DEPs)

Sakurai et al, *ES&T* 37:5487, 2003; Grose et al., *ES&T*, doi:10.1021/es052267, 2007

Summary

•*Tandem measurements on particles provides rich information on physical properties, transport properties and composition.*

•*Filter measurements of organic particulate matter can be affected by vapor adsorption.*

•Mass spectrometry is providing valuable insights on the sources and composition of organic particulate matter

-Lubricating oil is an important primary emission from diesel engines

-Particulate emissions from biofuels differ chemically from those produced by fossil fuels

Questions?