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Spectral Identification of Plant Communities
for Mapping of Semi-Natural Grasslands

RESUME

Cette étude a été réalisée sur des prairies caractérisées
par un sol sableux et bien drainé au Danemark. Les
données images comprenaient des images du capteur
CASI (Compact Airborne Spectrographic Imager),
géoréférencées et étalonnées par rapport a la réflectance
apparente de surface. Les données écologiques incluaient
une carte d'aménagement basée sur le travail de terrain,
le repérage des especes de plantes (vasculaires) et trente
sites tests de 30m par 30m regroupés en fonction de sept
classes d'aménagement identifiées sur le terrain et de sept
classes floristiques modélisées a partir de l'analyse de
correspondance normalisée. L'analyse spectrale a été
réalisée a partir de la réflectance dérivée des images de
18 sites tests localisés a l'intérieur du couloir de visée du
CASI. L'identification spectrale des communautés de
plantes était basée sur une approche hiérarchisée
établissant le rapport entre les sites test et i)
l'aménagement (Ma), et ii) la flore (Fl) utilisant la
cohérence spectrale et la séparabilité comme critére
principal. L'évaluation de la cohérence spectrale était
basés sur la classification non dirigée par agrégation des
sites test des classes Ma de 1 a 7 suivie d'une analyse
discriminante canonique. L'évaluation de la séparabillité
spectrale était basée sur des mesures de la distance
Jeffries-Matusita. la croissance des graines a généré des
classes d'entrainement en fonction de l'aménagement et
de la flore (classes MaFl). Une classification par
maximum de vraisemblance a montré que les classes
étaient bien définies statistiquement et spatialement
cohérentes. La superposition de la classification des
classes MaFl sur la carte d'aménagement a permis
d'ajouter une information détaillée sur la variation de la
végétation a l'intérieur des zones d'aménagement.
L'inverse de la précision de classification utilisant la
carte d'aménagement comme réalité de terrain a été
interprétée comme une mesure de ['hétérogénéité de la
communauté de plantes a l'intérieur des classes
d'aménagement. L'analyse spectrale de méme que la
classification par maximum de vraisemblance ont
démontré que la source de la variation spectrale a
l'intérieur des classes d'aménagement pourrait étre reliée
a la composition de la végétation.

by A. Jacobsen ¢ A.A. Nielsen ¢ R. Ejrnzs ¢ G.B. Groom

SUMMARY

This study was performed on Danish grasslands on well-
drained sandy soils. Image data included georeferenced
Compact Airborne Spectrographic Imager (casi) data
calibrated to apparent surface reflectance. Ecological data
included a field-based management map, registration of
(vascular) plant species and thirty 30 m by 30 m test sites
with affinities corresponding to seven management classes
identified in the field and seven floristic classes modelled
from detrended correspondence analysis. Spectral analysis
was performed on the derived image reflectance of 18 test
sites  positioned within the casi scanline. Spectral
identification of plant communities was based on a
hierarchical approach relating the test sites to i)
management (Ma) and ii) flora (Fl) using spectral
consistency and separability as the main criteria.
Evaluation of spectral consistency was based on
unsupervised clustering of test sites of Ma classes 1 to 7
Jfollowed by canonical discriminant analysis. Evaluation of
spectral separability was based on measures of the Jeffries-
Matusita distance. Seed growing generated training classes
relating to management and flora (MaFl classes). Maximum
likelihood classification showed that the classes were well-
defined in statistical terms and also spatially coherent.
Superimposition of the classification of MaFl classes on
the management map added detailed information of
vegetation variation within the management areas. The
inverse of the classification accuracy, using the
management map as ‘ground truth’, was interpreted as a
measure of plant community heterogeneity within
management classes. The spectral analysis as well as the
maximum likelihood classification indicated that the
source of spectral variation within management classes
might be related to vegetation composition.
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INTRODUCTION

Only a minor part of Denmark comprises semi-natural
terrestrial habitats such as dry grasslands (Ejrnas and
Bruun, 1995). Dry grasslands support a large diversity of
native plant and invertebrate species and have experienced a
dramatic decline in the Danish landscape in recent years.
Furthermore the open grassland areas act as corridors in the
landscape for dispersion of plants and animals. A major threat
to semi-natural grasslands today is encroachment with woody
species following the cessation of grazing. Natural processes
such as wildfires and wildlife grazing that open up scrub areas
and woodlands rarely occur and are actively prevented by
forestry management practices. Furthermore, since most of
Denmark comprises highly productive agricultural areas,
succession of fallow land into low-productive, species rich
semi-natural grasslands is unlikely to occur. Accordingly,
management of the remaining semi-natural grasslands in
terms of livestock grazing or cutting is crucial for long-term
conservation of biodiversity in the Danish landscape.

Mapping at a detailed level is an important issue in monitoring
landscapes for biodiversity. Automated classification of remote
sensing data is a well-established technique used for
classification of broad land cover classes (Fuller ef al., 1994).
However, separation within broad land cover classes of
management and floristics is also likely to be possible,
associated with the opportunities provided by airborne scanners
of high spatial and spectral resolution. Satellite remote sensing
data have proven useful in monitoring of grassland management
(Mino et al., 1998) and identification of natural grassland and
rare species habitats (Lauver and Whistler, 1993). Recent
developments in spectral classification have resulted in the
interpretation of discriminant functions relating to, for example,
changes in vegetation due to ecological disturbances (Goodin
and Henebry, 1997) and numeric vegetation classification of
plant communities (Lewis, 1998).

The aim of this study was to investigate if the source of
spectral heterogeneity within grasslands may be related to
vegetation composition. The main approach was to study
spectral consistency and spectral separability between
groupings of test sites before they were accepted as classes.
Spectral consistency ensured that the multivariate data in each
assumed class comprised, in a statistical sense, just one class.
Spectral separability ensured that the multivariate data of each
assumed class were spectrally different. The final classes were
further refined and seed growing was used to generate training
classes for maximum likelihood classification. The study was
performed within the DANish Multisensor Airborne Campaign
(DANMAC) project (Groom et al., 1997).

STUDY AREA

The Mols Bjerge study area is located on the Djursland
peninsula in the eastern part of Jutland Figure 1. Mols Bjerge
was formed during the last Ice Age approximately 16,000 years
ago. The area was located between two tongues of the Young-
Baltic Glacier (Ebeltoft Vig and Kalg Vig, Figure 1). Terminal
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Figure 1.
Denmark and the Mols Bjerge study area (inserted top right).

moraines that were pushed from both sides formed long,
parallel ridges; during the retreat of the ice tongues a belt of
dead ice formed erosion valleys, dead ice kettles, and kames.

Cairns indicate that farming existed in Mols Bjerge already in
the later Stone Age 6,000-5,000 years ago and many grave
mounds indicate that the number of settlements increased in the
early Bronze Age 3,000-2,500 years ago. From the Iron Age
2,500-900 years ago settlement was more permanent and relics
of these farming systems are visible in the present landscape.
Today, the earlier cultivated areas are replaced by grasslands
with occasional domestic livestock grazing, and, apart from a
few fields, the area is dominated by open, dry grasslands, with
spontaneous shrub, thickets, deciduous forests and coniferous
plantations. On account of the glacial history of the area, which
is so clearly visible in the open landscape, its prehistoric
remains and its rich flora and fauna, the northern part of Mols
Bjerge was declared a protected area in 1977. The southern part
was added to the protected area in 1992.

DATA

The study was performed on image reflectance spectra derived
from a casi (Compact Airborne Spectrographic Imager) image
covering a minor part of Mols Bjerge and ecological data of
management and plant species composition from the whole
region of Mols Bjerge (Figure 2).

Image Data

The casi is a linear array scanner recording 512 pixels across
track in the spectral region from 400 to 900 nm with, in the
present case, a field of view (FOV) of 42°. The spectral
configuration of the scanner and the spatial resolution may be
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Date: 10" June 1997

Time: 11:47 local solar time

Study arca: Mols Bjerge, Denmark,
Location: 56 1248 N, 1031 58 E
Spatial resolution: 2 m nadir
Image size: 512 pixels, 2049 lines
Flight direction: North 1° E

Spectral configuration:

FWHM  Center (nm)
Band (nm) wavelength

1 16.3 424.35

2 12.8 475.60

3 12.8 525.20

4 129 550.05

5 12.8 601.60

6 11.1 650.65

7 11.1 682.85

8 11.2 715.10

9 11.2 736.70

10 11.2 769.10

11 11.2 801.60

Figure 2.

Image acquisition parameters, spectral configuration and 3-D image
cube of the casi image used in the study. Maximum likelihood
classification was performed within sub areas 1 and 2.

user-defined — the one being the tradeoff of the other as a function
of the integration time of the scanner. The scanner was flown
with a 2 m spatial resolution along the nadir line and an 11-band
spectral configuration. The spectral configuration (Figure 2) was
defined for use in the classification of encroachment of forest
onto grasslands (Jacobsen et al., 1998) and grassland monitoring
(this paper); consideration was taken of a pilot study of the
spectral separability of grasslands (Jacobsen et al., 1995) and a
study of forest inventory and mapping (Baulies and Pons, 1995).

The image data (Figure 2) were acquired on 10 June 1997 as
part of the DANMAC project. The image was acquired at 11:47
local solar time flying north 1° east, i.e. as close to solar noon as
possible in order to diminish the effects of bi-directional
reflectance. The image was acquired during good weather
conditions — high pressure and no cloud cover. Spectral signatures
over one calibration target were measured during image
acquisition and used for atmospheric calibration of the image data
to apparent surface reflectance (Jacobsen et al., 2000).

The quality of the spectral and radiometric calibration of the
casi data was assessed (Jacobsen et al., 2000). It was found that
the radiometric calibration was poor in the first two bands and
that spectral calibration accuracy exceeded + 0.25 nm in the left-
most 135 columns across-track due to spectral alignment

problems. Retrieved surface reflectance factors were negative
for a number of pixels in the first two bands and other studies
showed that the spectral inaccuracy affected classification
results (Jacobsen et al., 1999a). In summary, due to the image
quality problems, the image data were reduced to 377 columns
and just nine bands of data from 525 to 802 nm.

The image data were georeferenced for integration of
ecological and spectral data using a digital elevation model
(DEM) and a triangular irregular network (TIN) resampling
(Jacobsen et al., 1999b). To avoid data resampling effects the
spectral analysis and maximum likelihood classification were
performed on non geo-referenced data.

Ecological Data

In 1996, botanical field work including management
mapping and registration of vascular plant species was
performed on all grassland areas in Mols Bjerge that had a
cover of grasses, forbs and/or dwarf shrubs of more than 25%;
forest clearings were excluded.

Management
The grassland areas were assigned to one of seven
management (Ma) classes:

* old unimproved grasslands with continuous grazing (Ma 1),
* old, unimproved, but abandoned grasslands (Ma 2),

» medium aged grassland, previously cultivated, but now with
spontaneous dry grassland vegetation (Ma 3),

« young, formerly cultivated areas with spontaneous grazed
vegetation (Ma 4),

« young, formerly cultivated areas with spontaneous ungrazed
vegetation (Ma 5),

* 1-5 years old ‘set-aside’ vegetation dominated by weed
species (Ma 6), and

« improved, sown grass swards (Ma 7).

Assignment to management class was assessed on the basis of
topography, vegetation, air photos (1945-1990) and landowner
interviews. Ma classes 1, 2 and 3 were distinguished on the
basis of their grazing pattern and an index of indicator species
for old grasslands of conservation interest (Ejrnas and Bruun,
1995). Ma classes 4, 5 and 6 were distinguished on the basis of
grazing patterns and field assessment of short-term land
management. A management map (Figure 3) was produced
from the field surveys with the assistance of infrared airphotos
acquired in 1995; for overview purposes this map was digitized
via feature duplication onto a digital image acquired with a GER
(Geophysical Environmental Research) 3715 scanner in 1995.

Plant Species
Vascular plant species were recorded using a robust
abundance scale that was adapted to the species inventory of
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Figure 3.

Scale ~1:25,000

Mols Bjerge (unmapped)
Location of casiimage

Old grassland (1)

Old, abandoned grassland (2)
Medium aged grassland (3)
Pasture (4)

Ungrazed areas (5)

Fallow fields (6)

Improved grass swards (7)

AN BEER

The seven management classes as field mapped in 1996. The floristic analysis included information of plant species composition from all 290 grassland
areas on the map. Maximum likelihood classification was performed within sub areas 1 and 2.

these large and often heterogeneous areas. An abundance scale
with four steps was used: ‘present with low cover’, ‘frequent
with moderate cover’, ‘frequent with high cover over at least
part of the area’ and ‘high cover over the majority of the area’.
Dominant species and indicative species of the seven
management classes are listed in Table 1. The distinction
between dominant and indicative species was based on the
principle that dominant plant species are often widespread with
wide ecological amplitude, which makes them less suited as
indicators at a detailed level. Dominant species may
nevertheless be informative for vegetation description.
Dominance was estimated as the product of frequency and
average abundance score; indicator value was estimated by a
method proposed by Dufréne & Legendre (1997).

Test Sites

In 1997 (within = 10 days of the casi over-flight) thirty 30m
by 30m test sites, at the time regarded to be representative of
the seven different management classes, were surveyed. For
these test sites, areas with homogeneous vegetation and
constant slope angle and aspect were selected. Vascular plant
species were recorded using the same abundance scale as in
1996. Eighteen test sites were located in the casi scanline and
used for the spectral analysis.

Integration of the image and ecological data was based on
the georeferenced image data and geopositioning of the test

sites using differential global positioning system (DGPS).
The test sites were re-located by visual inspection in the
non-georeferenced image (Figure 4) before spectral
analysis of the reflectance data.

VEGETATION ANALYSIS

Floristic analysis of the management classes in Mols Bjerge
was performed using detrended correspondance analysis
(DCA). Subsequent floristic classification, supervised by the
management characteristic, was based on clustering of the
DCA scores. The analysis was performed on floristic data from
the management inventory in 1996 (290 plots) and the test site
inventory in 1997 (30 plots). The vegetation analysis was
performed independently from the other analyses as a means
for interpretation of the subsequent spectral analysis and is
presented here only in brief.

Floristic Variation

The untransformed floristic data from the 1996 and 1997
inventories were combined and subjected to ordination using a
standard DCA (Hill, 1979; @kland 1990) with down-weighting
of rare species. PC-Ord (McCune and Mefford, 1997) was used
for ordination. Three ordination axes were extracted,
representing the major floristic gradients present in the data
(@kland, 1990). The ordination scores on DCA axes 1 and 3 are

w
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Table 1.
Dominant species and indicative species of each of seven recognized management classes.

Management class

Most dominant species

Most indicative species

Old, unimproved grassland (grazed) (Ma 1)

Old, derelict, unimproved grassland (ungrazed) (Ma 2)

Medium-aged grassland (grazed/ungrazed) (Ma 3)

Young, formerly cultivated grassland (grazed) (Ma 4)

Young, formerly cultivated grassland (ungrazed) (Ma 5)

Fallow fields (Ma 6)

Improved grass swards (Ma 7)

Deschampsia flexuosa
Agrostis capillaris
Festuca ovina

Deschampsia flexuosa
Calluna vulgaris
Holcus mollis

Hieracium pilosella
Deschampsia flexuosa
Agrostis capillaris

Festuca rubra
Agrostis capillaris
Bromus hordeaceus

Deschampsia flexuosa
Elymus repens
Holcus mollis

Elymus repens
Senecio vernalis
Rumex acetosa

Lolium perenne
Festuca rubra
Poa pratensis

Lathyrus montanus
Festuca ovina
Genista anglica

Calluna vulgaris
Deschampsia flexuosa
Avenula pratensis

Luzula campestris
Hieracium pilosella
Lotus corniculatus

Achillea millefolium
Agrostis capillaris
Festuca rubra

Arrhenatherum elatius
Anthriscus sylvestris
Dactylis glomerata

Viola arvensis
Senecio vernalis
Artemisia vulgaris

Lolium perenne
Taraxacum sect. Vulgare
Trifolium repens

shown in Figure 5. The numbers 1-7 in the figure indicate the
Ma classes of the plots. Figure 5 shows that Ma classes 1 and
2 (and to some extent Ma 3) and Ma classes 6 and 7 occupy
opposite ends of DCA-1, the major floristic gradient of the
ecological data in the study. This result is in agreement with
Table 1 that shows Deschampsia flexuosa to be a shared
dominant of Ma classes 1, 2 and 3, whereas no other dominants
co-occur in Ma classes 6-7 and Ma classes 1 to 3. Ma classes 4
and 5 appear to share dominants with both ends of the gradient;
Ma 3 also shows this characteristic, but to a lesser extent.

Floristic Classification

Floristic classification of the ecological data was performed
using a multi-log linear classification model (Venables and
Ripley, 1997). The Ma class, as a function of the ordination
scores on DCA 1 to 3, was used to weight each observation in
the model with the relative abundance of its management class.
Modelling was performed with S-Plus 4.5 (MathSoft, 1998).
The model was refined to optimize floristic similarity by fitting
the model a second time using probability of membership to the

Ma class as the weight factor. This last procedure assigned
more weight to typical floristic classes of a given Ma class, and
allowed for untypical examples to be assigned to another class.
The final model was used to predict the floristic class (FI class)
for each of the grassland areas and the test sites, with FI classes
1 to 7 relating to Ma classes 1 to 7 respectively.

The cross table (Table 2) shows the agreement between the
Ma classes and the FI classes, and shows the floristic
consistency of the field classification in terms of its Ma classes.
It is seen from the table that the vegetation model gives 49
possible combinations of Ma and FI classes (MaF]I classes) of
which the grassland areas and test sites together populate 35.
Ma classes 1 to 3 (the target classes for conservation) are well
separated from Ma classes 6 and 7 (areas of intensive human
use). It may also be seen that Ma classes 4 and 5, and to some
extent 3 (potential future conservation interest) are less well
separated in floristical terms and there are several possible
explanations for this. First, these areas are successional and
many factors (e.g., soil fertility and colonization opportunities)
may influence the course and speed of succession. Second, the
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Figure 4.
Flow chart showing the retrieval of the high precision test site data set

of spectral reflectance, management (Ma) and floristic (F1) class.

accuracy of the assignment to the management classes for these
areas is considered less certain due to insufficiencies in the
historical management data. In summary, 58 % of the samples
could be classified to the floristic class characteristic of their
management class, whereas 42 % were misclassified. Most
misclassifications were however between management classes
in the same conservation category, viz. “target” (Ma 1, 2 and 3),
“potential” (Ma 3, 4 and 5) or “inferior” (Ma 6 and 7).

SPECTRAL ANALYSIS

The subsequent spectral analysis was the core of this work and is
presented in two main sections (‘Methods’ and ‘Results and
Discussion’). The treatment given here is more thorough than that
of the vegetation analysis. Spectral analysis was performed on
reflectance spectra derived from the 18 test sites that were located
in the 377 columns of the image with acceptable data quality.

Table 2.
Combinations of management (Ma) and modelled
vegetation affinity (FI).

Class Fl1 FI2 FI3 Fl4 FIS Fl6 FI7

Mal 6 8 7 1 0 0 0
Ma2 4 33 2 2 6 1 1
Ma3 4 7 16 6 3 0 0
Ma4 1 2 7 51 17 5 8
Ma$ 0 7 3 18 36 6 1
Ma6 0 0 0 0 19 2
Ma7 0 0 0 3 2 34

Canadian Journal of Remote Sensing/Journal canadien de télédétection

SPECTRAL ANALYSIS: METHODS

The spectral analysis included evaluation of spectral
separability and consistency and subsequent seed growing to
further refine the training classes to be used in the
classification. Spectral class separability analysis was
performed on Ma classes, Fl classes and MaFI classes. Spectral
class separability analysis was performed again on MaFI
classes after seed growing. Spectral consistency analysis and
seed growing was performed on MaF] classes.

Spectral Separability

Class spectral separability was analyzed by applying the
pairwise Jeffries-Matusita (J-M) distance measure between
classes and the average pairwise J-M distance between all
classes (Matusita, 1966; Ersbell, 1989). The J-M distance
between perfectly separable classes is V2 (~ 1.41). Spectral
class separability analysis was performed on Ma classes, Fl
classes and MaF]I classes. Spectral class separability analysis
was performed again on MaFI classes after seed growing.

Spectral Consistency

Spectral consistency was performed by artificially
subdividing each of the Ma classes into a number of spectral
clusters. Canonical discriminant analysis (CDA) was used to
evaluate if the clusters were separable; CDA (Fisher, 1936) is a
powerful tool to transform a set of features that optimize class
separability (Richards, 1993). If a plot of canonical scores of an
Ma class along CDA-axes 1 and 2 showed no sign of outliers
or grouping it was accepted as a class.

An unsupervised clustering algorithm was used to sub-divide
the Ma classes into the artificial clusters. Observations within
each class, called “cluster seeds’ (one for each assumed cluster),
were randomly selected as a first guess of potential cluster
means. Clusters were formed by assigning all observations to
the nearest seed as measured by Euclidean spectral distance in
the feature space spanned by the original nine spectral bands.
Once all observations were assigned, new cluster means were
calculated. New clusters were formed by assigning all
observations to the new cluster means. The last two steps were
repeated until changes in cluster means became zero (or small).

Generation of Training Classes

Since successful supervised classification relies on good
training data, the statistically sound MaFI classes (see next
section) that were identified from the evaluation of spectral
consistency were further refined prior to classification. This
involved use of a semi-automatic algorithm (Nielsen et al.,
1998, Larsen et al., 1999 and Flesche et al., 2000) that was
applied for generation of training classes from the MaFl
classes. The test site spectra of each MaFI class were used as
seed points, and training classes were grown in a manner that
ensured spatial and spectral closeness. Spatial closeness was
obtained by requesting connectivity. Spectral closeness was
obtained by restricting, during growing of the training set, the
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7 as assigned in the field.
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Figure 5.

Diagram showing DCA scores along DCA 1 and DCA 3 for the 290 grassland areas and the 30 test sites. Numbers 1-7 relate to management classes 1 to

spectral distance to the current mean value of the class. There
were sufficient seed points per class to define an initial training
set and to estimate the dispersion matrix. The dispersion matrix
was used to i) exclude any outliers in the current training, and
i) increase the size of the training set further using the
Mahalanobis distance method. The final training classes were
used for classification using a maximum likelihood classifier.

SPECTRAL ANALYSIS:
RESULTS AND DISCUSSION

The spectral analysis was a long and rather complicated process.
The process, including the results and discussion of the spectral
analysis, interpreted with reference to the vegetation analysis, is
described in detail in this section. A summary of the process is
provided in table form by the end of the section.

Spectral Separability of Ma and FI Classes

As a first approach, the image reflectance spectra derived
from the test sites were placed in one of seven groups based

on their management class. The results of the spectral
separability analysis are shown in Table 3.

Comparison of Table 3 and the DCA diagram (Figure 5)
indicates that the spectral separability of the Ma classes across
the 18 test sites could be explained by the general grassland

Table 3.
J-M distance between classes related to management
(Ma classes).
Class Mal Ma2 Ma3 Mad4 Ma5 Ma6 Ma7
Mal 0.00
Ma2 132 0.00
Ma3 129 121 0.00
Ma4 140 136 141 0.00
MaS 128 1.13 1.12 140 0.00
Ma6 140 140 137 141 138 0.00
Ma7 141 139 132 141 139 140 0.00
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floristic variation in the Mols Bjerge study area. Figure 5
shows that Ma classes 6 and 7 and Ma classes 1 and 2 have
extreme opposite DCA scores and Table 3 shows that the
spectral J-M distances between Ma classes 6 and 7 and Ma
classes 1 and 2 are at or close to the value of 1.41. Similarly,
Ma classes 6 and 7 are fairly well separated from each other
along DCA 3 and they are also well separated from each other
in spectral space. It is seen from Figure 5 that Ma classes 3, 4
and 5 occupy the same floristic space to a large extent and that
they are close to the other classes as well, in particular class 1.
This pattern is reflected in spectral space by the J-M distances
(Table 3), except for the case of Ma 4, a deviation that might
be because this class is represented by only one test site.

The indication from the comparison between the spectral
separability of the Ma classes of the 18 test sites and the
floristic DCA analysis that vegetation composition is the source
of spectral variation, was further investigated. For this, the 18
test sites were regrouped based on floristics (FI classes) and the
spectral separability analysis was performed again. J-M
distances measured between the F1 classes showed that the Fl
classes (Table 4) were more poorly separated than the Ma
classes (already shown in Table 5). This result might be
explained as the spectral signatures being markedly influenced
by the recent, short-term management characteristics of the
area e.g., the grazed/non-grazed status; conversely, the effect of
such management on the floristics takes far longer (years) to be
established. The comparatively species poor, acidic grasslands
of Mols Bjerge are known to respond very slowly to changing
land use (Biilow-Olsen, 1980).

Table 4.
J-M distance between classes related to plant species
composition (FI classes).

Class  Fll F12 FI3 Fl4 FI5 Fl6 F17
Fl1 0.00

F12 1.20  0.00

FI3 1.23  1.11  0.00

Fl4 1.40  1.34 127 0.00

FIS 1.08 122 128 120 0.00

Fl6 1.39 138 139 1.17 120 0.00

F17 1.40 141 134 140 138 1.41 0.00

Identification of MaFI Classes

For further investigation of the vegetation composition as the
source of spectral variation, spectral consistency analysis was
performed on the data of the 18 test sites grouped into Ma
classes. Each Ma class was clustered and subjected to CDA as
described in the Spectral Analysis:Methods section.

Inspection of the CDA diagrams revealed that clusters within
Ma classes could largely be explained by the variation in
vegetation composition i.e., the modelled FI classes from the
vegetation analysis. Three test sites did not fit this pattern:
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i)  One test site in Ma 2, predicted by the vegetation model as
FI 5 was floristically atypical and placed at an extreme
position in the DCA plot compared to other areas of the
same MaFI class;

ii) Another test site in Ma 2, predicted by the vegetation model
as F12 was floristically as well as spectrally in between two
other test sites belonging to MaFl 2.1 and MaFI 2.2;

iii) All four test sites in Ma 3 were predicted to belong to Fl 3.
One of these test sites was spectrally different from the
other three (Figure 6): from inspection of the plant species
registered in the field it was clear that this site was
floristically atypical for the whole area and accordingly
less reliable in terms of floristic class prediction.
Furthermore, two test sites belonging to MaFI 3.2 (labelled
in Figure 6 with respect to their slope aspects, NNW and
SSE) were spectrally inconsistent, belonging to two
spectral clusters. This was most likely due to the slope
angle and aspect effects influencing the spectral
reflectance through differences in the vegetation
phenology and vigour as well as bi-directional effects. For
some unexplained reason, this test site and MaFl 3.3
mentioned above belonged to the same spectral cluster.

For the above reasons the three test sites (MaFI 2.5, MaFl1 2.2,
and MaF1 3.3) were excluded from further analysis. The two test
sites (MaF1 3.2 SSE and MaFl 3.2 NNW) of the same MaFI
class that belonged to two different spectral classes were merged
in order to investigate further the source of spectral variation as
related to species composition. By doing this we deliberately
overruled the principle of the model, i.e., the primacy of the
spectral consistency (or unimodality) of spectral classes.

The results of the spectral analysis indicate that it is
plausible to consider vegetation composition as a source of
spectral variation within land use categories of grasslands. It
is, however, open for discussion whether it is reasonable to
expect unimodal spectral classes when it comes to semi-
natural vegetation, which will always be heterogeneous,
dependent on the scale we are looking at (as exemplified by
the case of MaFI1 3.2). We do find indications that the approach
was reasonable, since Figure 6 shows that the single test sites
are spectrally homogeneous. We did not find any test sites with
more than one statistically valid cluster; different clusters
always indicated different test sites belonging to the same
group of either Ma or MaFI. The ground pixel spacing of the
casi image was 2 m by 2 m and an area of 4m? is considered
optimal with regard to meeting the sampling criteria of
representativeness and homogeneity in grassland studies
(@kland, 1990). The dimensions of the test sites was 30 m by
30 m, which was regarded as optimal for the larger scale
homogeneity of this study area. Either smaller pixel size or
larger test sites are likely to have introduced spectral clusters
that could not have been identified floristically.
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Figure 6.
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-11.34

T
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Spectral identification of MaFI classes based on canonical discriminant analysis using CDA axes 1 and 2.

0.62 6.60 12.58

Spectral Separability of MaFI Classes

The J-M distances calculated for 11 spectrally identified
MaFl classes showed that the mean J-M distance including
zeros on the diagonal was 1.28. For 34 of the 55 class
combinations, the separability was 1.41 (Table 5).

Training Class Generation

The MaFl classes were refined to training classes for
maximum likelihood classification by seed growing. Using all
observations in the test sites as seeds and restricting the
Mahalanobis distance to x> < 0.50 improved the overall
separability, with the resulting J-M distance being 1.41 for all
except seven of class combinations (Table 6).

J-M distance between 11 classes related to manageme’lll‘ta ::ledsl.)lant species composition (MaFI) before seed growing.

MaFl class 1.1 1.2 2.1 22 32 33 44 5.3 5.5 6.5 7.7

1.1 0.00

1.2 1.41 0.00

2.1 1.40 1.41 0.00

22 1.41 1.41 1.41 0.00

32 1.41 1.41 1.40 1.20 0.00

33 1.40 1.23 1.41 1.41 1.39 0.00

4.4 1.38 1.41 1.39 1.41 1.41 1.41 0.00

5.3 1.41 1.40 1.41 1.36 1.12 1.38 1.41 0.00

5.5 1.37 1.37 1.38 1.41 1.41 1.30 1.39 1.41 0.00

6.5 1.41 1.41 1.41 1.41 1.41 1.32 1.41 1.41 1.34 0.00

7.7 1.41 1.41 1.41 1.41 1.41 1.39 1.41 1.41 1.41 1.40 0.00
378
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J-M distance between 11 classes related to managem;l;latbalfng.plant species composition (MaFl) after seed growing.
MaFIClass 1.1 1.2 2.1 2.2 3.2 33 4.4 53 5.5 6.5 7.7
1.1 0.00
1.2 1.41 0.00
2.1 1.41 1.41 0.00
2.2 1.41 1.41 1.41 0.00
3.2 1.41 1.41 1.41 1.34 0.00
33 1.41 1.35 1.41 1.41 1.41 0.00
4.4 1.41 1.41 1.41 1.41 1.41 1.41 0.00
53 1.41 1.41 1.41 1.40 1.30 1.41 1.41 0.00
5.5 1.41 1.41 1.41 1.41 1.41 1.40 1.41 1.41 0.00
6.5 1.41 1.41 1.41 1.41 1.41 1.39 1.41 1.41 1.40 0.00
7.7 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 0.00

Schematic Summary

The list of steps in the spectral analysis is given in Table 7.

IMAGE CLASSIFICATION: METHOD

The training class set was edited to remove any MaFI class that
had a test site with an MaFI class different from that of the
grassland area in which they were. This allowed
superimposition of classification results on the management

map, but reduced the number of training classes from eleven
to six. Classification was performed on sub areas 1 and 2
masked to include only those grassland areas with the same
MaFl class as the six remaining training classes. The
maximum likelihood classification used training classes
derived from the test sites of non-georeferenced data and was
performed on non-georeferenced image data. The
classification results were subsequently georeferenced for the
analysis with the management map.

Table 7.
Summary of the spectral analysis.

Step Process and results of spectral analysis

1 The test sites were grouped in ground-based Ma classes 1-7.

2 The spectral separability of Ma-classes was indicated by plant species composition.

3 The test sites were grouped in modelled Fl classes 1-7.

4 The Fl-classes were distributed along a gradient and were less well spectrally separable than were Ma-
classes.

5 The test sites were grouped again in ground-based Ma-classes 1-7.

6 Ma-classes were evaluated for spectral consistency.

7 The spectral analysis showed that unimodal sub-classes within Ma classes were related to plant species
composition (FI class).

8 Each test site was assigned a new class based on its combination of ground-based Ma class and modelled
FI class (MaFI classes).

9 The MaFI classes were spectrally consistent and spectrally well separated.

10 The MaFl classes were ‘pruned’. Only some pixels were retained within the classes, retention based on
spectral homogeneity.

11 The MaFl classes were further constrained to be spatially contiguous by the process of growing training
classes based spectrally on the pruned MaFI classes

12 The MafFI training classes were demonstrated to be very spectrally separable.
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IMAGE CLASSIFICATION:
RESULTS AND DISCUSSION

The result of the maximum likelihood classification is shown
for the masked sub areas 1 and 2 in Figure 7.

Figure 7 shows that the generated training classes are not only
consistent in terms of ecological and spectral variables, they are
also spatially coherent, indicating that their selection criteria were
successful. Comparison of the spectral classification (Figure 7,
left) to the management map (Figure 7, right) gives detailed

Maximum likelihood classification results of
spectral MaFI classes

Ground based management arcas with the same
MaFI combination as the spectral MaF1I classes

s

Legend:

Red: MaFl 1.1 Blue: MaFl 2.1 Purple: MakFl 3.3

Green: MaF11.2 Yellow: MaF12.2 Cyan: MaFl1 5.5
Figure 7.

Maximum likelihood classification of six MaFI classes (left) and management map (right). The location of sub areas 1 and 2 are shown in Figures 2 and 3.
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information on the heterogeneity of the vegetation within large
areas that are homogeneous with respect to their management. A
measure of vegetation heterogeneity within management classes
was obtained by inverting the classification accuracy. In practical
terms, the vegetation heterogeneity (Table 8) was expressed as
100% minus the maximum likelihood classification accuracy,
using the management map as ‘ground truth’ and the maximum
likelihood classification as the classification result.

Table 8 shows that the heterogeneity, in terms of the
maximum likelihood classification, is largest for classes
MaFl 1.2, MaFl 2.1 and MaFl 5.5. It is seen from the
confusion matrix (Table 9) that the high measure of
heterogeneity for class MaFI 1.2 largely relates to MaF] 2.2.
Ma classes 1 and 2 are closely related floristically (Figure 5),
and MaFI 2.1 might be seen as classifying as MaFl 1.2 and
MaFl 2.2 for the same reason (Table 9). MaFl 5.5 is
positioned in the centre area of the DCA plot (Figure 5) and
the heterogeneity of this class could be due to its closeness to
several other flora classes, as indicated in Table 9.

In the vegetation analysis, it was stated that only 58% of
the grassland areas had their flora class predicted by their
management class and hence the results in Table 8
indicating considerable heterogeneity are not surprising. An
interesting observation from this is that the source of
heterogeneity may be interpreted from the position of the

Canadian Journal of Remote Sensing/Journal canadien de télédétection

Ma classes in the floristic diagram (Figure 5). This suggests
that the source of spectral variation within the management
classes may be related to vegetation composition, as was
indicated by the spectral analysis of the test sites.

Topographic reflectance effects and variations in
vegetation conditions not covered by the flora model are
seen in the classification result for sub area 2 for MaFI 1.2.
This area represents a small hill with a north-south ridge.
The Ma class is the same on both sides of the ridge but due
to differences in topography or micro-climate, the area is
spectrally classified on either side mainly as MaFI 1.2 and
MaF1 2.1. Studies incorporating digital elevation data could
show if the pattern here of the image classification is more
strongly related to the vegetation characteristics or to
topographic effects.

Of the six MaFI classes, MaFI class 1.1 is spectrally classified
with the least heterogeneity, which makes sense ecologically.
MaFl 2.2 is, from field investigation, known to be fairly
homogenous with respect to vegetation and is classified as
such. The more textured classification of the northwestern part
of MaFI 2.2 is field validated by its variability in terms of soil
humidity and successional stage. The confusion between MaFI
1.2 and MaF1 3.3 is not readily recognized in the field, but may
be explained floristically since Ma 1 and Ma 3 occupy the same
space in the DCA diagram (Figure 5).

Table 8. The clustering of the floristic and the reflectance spectra
Measure of heterogeneity within management data is to some degree artificial since the phenomena that
areas described as the inverse of the classification the data represent are not naturally clustered but
accuracy. continuous. The floristic gradient analysis (Figure 5)
MaPFI classes Heterogeneity (%) showed the continuous (interpreted as successional)
MaF1 1.1 3754 development frorn Ma classes 6 and 7 to .Ma classes 1 an.d
2. If, as shown in the study, the vegetation reflectance is
MaF11.2 74.48 governed by the species composition this feature could be
MaFl 2.1 66.52 exploited using spectral unmixing. As a first approach,
MaFl 2.2 40.52 unmixing could target classes distributed at the extreme
ends of DCA 1, since these classes are well separated
MaF13.3 32.87 floristically as well as historically and with respect to their
MaFl5.5 66.55 management. Spectral unmixing of the grassland areas,
Table 9.
Confusion matrix of the classified image map and the ground reference map,
- showing the number of classified pixels per class. - -
Ground truth management map
Class MaFl 1.1 MaFl1 1.2 MaFl 2.1 MaF12.2 MaFl 3.3 _M1F175574
Unclassified 154 1780 72 1627 148 238
MaFI 1.1 1406 301 649 524 31 986
MaFI 1.2 2 3474 4 1021 250 12
MaFl 2.1 99 463 535 3394 4 68
MaFl12.2 1 175 6 19000 0 1
MaFI 3.3 248 6270 148 5142 1195 879
MaFl 5.5 290 605 164 936 144 1122
381
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with Ma classes 6 and 7 and Ma classes 1 and 2 as training
classes (endmembers) could potentially produce abundance
maps that could be interpreted as the succession stages from
sown grassland areas to old well-established grasslands.

CONCLUSION

The study was a joint venture combining diverse scientific
disciplines. The combination of ecological analysis based on
management and floristic data using detrended correspondence
analysis and subsequent floristic clustering and spectral
analysis based on image derived reflectance spectra using
canonical discriminant analysis performed well. A hierarchical
approach identified management related plant community
classes (MaFlI classes) spectrally by dividing a set of test sites
into management classes (Ma classes), based on field
information, and then into floristic classes (Fl classes), based
on modelling. The driving force in the analysis was the
requirement for consistency of spectral classes in terms of their
being unimodal and evaluation of spectral separability between
classes using the J-M distance as a measure. Unimodality of
spectral classes with respect to management and plant
composition was achieved and apparently described the
complex reality of the grasslands. The spatial resolution of the
casi image data (2 m by 2 m) is recommended for further
grassland studies whilst the size of the test sites (30 m by 30 m)
should be field evaluated for every study.

Maximum likelihood classification of the image and its
superimposition on the management map added detailed
information on vegetation heterogeneity. The inverse of the
classification accuracy described the vegetation heterogeneity
within the field-mapped areas. Evaluation of the heterogeneity
with respect to the confusion matrix was compared to the DCA
results and indicated, as did the spectral analysis, that the
source of the heterogeneity of the ground-mapped
management areas might be related to plant species
composition. The results indicate that airborne remote sensing
with high-resolution spectral data could be an important tool
in the conservation and monitoring of grasslands by adding
information of plant community variation; this is even in spite
of it being more labour intensive than satellite remote sensing.
Transfer of the approach to include satellite data is not likely
to be as powerful in relation to the spatial and spectral
considerations. Airborne remote sensing data may be further
exploited using spectral unmixing of the extreme ends of the
MaFl class variation. Abundance maps of, in the present case,
Ma classes 6 and 7 and Ma classes 1 and 2 could potentially
produce vegetation composition abundance maps that could be
interpreted in terms of successional stages from sown
grassland areas to old well-established grasslands.

As a concluding remark, the authors would like to encourage
further joint efforts between image processing specialists, data
analysts and plant ecologists using advanced image and data
processing techniques to extract and identify spectral
information available from scanners at a highly detailed level.
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