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Summary

Predictive models involving theoretical studies combined with empirical
knowledge, i.e. field and laboratory experiments are useful as support for
decisions in environmental related problems. These models can help to
take action before the actual problems become serious and to evaluate
the consequences of different future scenarios formed by different actions
taken. Therefore, model calculations have a central place in e.g. the risk
assessment of chemicals. More and more sophisticated models have been
developed in the last 20 years and the boundary for the possible calcula
tions has been extended dramatically during the years. But a wide gap
has open up between what is possible calculations and what is redlistic
calculations, the later yielding some kind of new information. The quan-
tification and minimisation of uncertainty have become key issues in the
attempt to make useful mathematical models for decision support.

Models involving high complexity are often associated with seriously
uncertainty. Thus, the use of the models needs to be supported with a
careful uncertainty analysis, which is one of the maor chalenges in
model application. Uncertainty analysis is more and more widely used as
an integrated part of risk analysis and denoted probabilistic risk assess-
ment. However, even though the basic principle of probabilistic risk as-
sessment is sound, there exist some pitfalls to be aware of. It isimportant
to realise that the uncertainty estimate may be uncertain. An incomplete
uncertainty estimate can easily underestimate the true uncertainty and
thereby end up with conclusions of false realism.

In this report a systematic approach is described to guide a systematic
uncertainty analysis in relation to risk assessment. The problem can in
general be formulated as a duality between models which: "Say much
about little" and models which "Say little about much"”. If the goal is to
make a detailed prediction ("to say much") by a model then the model
needs to be so complex in order to take many processes into account that
only a limited system ("about little") can be described. On the other
hand, if less detailed predictions are the topic ("Say little") then the
model complexity is more limited and it will be possible to say some-
thing about a larger system (“about much”). This is the dualism in any
prediction and thus also for mathematical models.

This report relates the decision support problem to mathematical model-
ling on a conceptual basis. The focus is risk assessment of chemicals but
the relevance is more broad and covers decision support based on
mathematical models in general. Two basically different sources of un-
certainty is considered:

1 Input uncertainty and variability, which arises from missing informa-
tion about actual values and natural variability due to a heterogene-
ously environment

2 Structural (model) uncertainties arise from the fact that every model is
asimplification of reality due to alimited systemic knowledge.



The input uncertainty can in principle be solved in most cases either
analytical or more often by using a Monte Carlo type analysis. In prac-
tise, however, it can be difficult to get the necessary information about
the variability of the input parameters and results from Monte Carlo cal-
culations needs to be interpreted with caution due to this problem. The
structure uncertainty, on the other hand, is more problematic to quantify
and a complete determination is in principle impossible because this will
demand a compl ete knowledge about the system to be model and thus no
need for a model! In this investigation it is shown, however, how the
structural uncertainty improvement can be determined for sub-processes
in a model. In this way it is possible to answer the question: Are there
any sub-processes (sub-models) in the model which is unnecessary
and/or harmful for the total uncertainty. It can thus easily be the case that
a model having many sub-models does a poorer job compared to a ssim-
pler model even if every sub-model is theoretical relevant and well de-
scribed. Combined uncertainty analyses using the concept of input and
structure uncertainty are useful to investigate these problems. In very
simple models the necessary input parameters are often available, yield-
ing output values with low uncertainty from the input parameters. On the
other hand these models will exhibit high structural uncertainties result-
ing in low accuracy. With very complex models the reverse trend is seen.
High input uncertainties are introduced from a large number of input pa-
rameters and furthermore default values have to be applied in severd
cases. The structural uncertainties will, however, be lower.

Even though the total uncertainty system seems complicated, there will
only be a few dominating sources of uncertainty in most cases. A model
can be said to be discordant (inharmonious) when some parts of the
model operates with arelatively low uncertainty while other parts of the
model includes a higher level of uncertainty. In a discordant model minor
uncertainty sources have been improved at the expense of major uncer-
tainty sources. However, if all information needed for an existing discor-
dant model is available then the model can be used without consideration
as a ‘best obtainable knowledge approach’. The problems arise if such a
model is used to identify data necessary for the decision making, because
resources are wasted on collecting superfluous information. Furthermore,
a discordant model can easily produce conclusions of false realism when
detailed parameter studies of low uncertainty sources are considered
when the emphasis should be on other parts of the model.

It is crucia and often a forgotten issue to integrate the uncertainty analy-
sis with the need for decision support. Thisis a result of the fact that the
uncertainty will increase and thus more complex structures have to be
implied for the desire of more detailed information (higher information
level). Thisis very important to realise for a decision-maker that will ask
an ‘expert’ about a prediction to support a decision. If the question is
formulated by the decision-maker at a higher information level than
strictly necessary for the decision alot of resources can easily be wasted.
This problem has been formulated in the statistical learning theory for
problem solution using a restricted amount of information as. When
solving a given problem, try to avoid solving a more general problem as
an intermediate step.



A close evaluation of model uncertainty is in genera a rather resource
demanding task and in reality the user of a model can easily be brought
into a situation where a model has to be used without the possibility for
such an evaluation. A possible way to deal with this situation can be to
use a kind of tiered approach where more easy screening methods can
help to identify model uncertainty in relation to a specific problem. A
guideline for such an approach is shown in this report.

This work is a part of a larger project concerning the fate of xenobiotics
in a catchment in Denmark (Roskilde). The conclusions from this report
will form the paradigm in the modelling performed in the project as such
for four specific systems, each one being a part of an overall system de-
scribing the flow of xenaobiotics in Roskilde municipality and catchment.






Danish summary

Modeller, hvor teoretiske studier er kombineret med empirisk viden kan
virke som beslutningsstette indenfor miljerelaterede problemer. Disse
modeller kan hjadpe med til at lave tiltag far miljgproblemerne bliver for
store og til at undersgge konsekvenserne ved forskellige fremtidige sce-
narier. Modelberegninger har derfor en central plads ved f.eks. risikovur-
dering af kemiske stoffer. Mere og mere sofistikerede modeller er blevet
udviklet til disse formal, issa gennem de sidste 20 ar, og begramsninger-
ne for hvad der er muligt at beregne er drastisk forbedret. Men dette har
betydet at et stort gab er blevet dbnet op mellem det der er muligt og sa
det der er realistisk at beregne. Bestemmelse og minimering af usikker-
hed er derfor blevet et nggleomrade i forsaget pa at lave brugbare mate-
matiske modeller til beslutningsstette.

Modeller med stor kompleksitet har typisk en stor usikkerhed. Derfor
skal brugen af disse modeller ledsages af grundige usikkerhedsanalyser,
hvilket er en af de sterste udfordringer ved modelbrugen. Usikkerheds-
analyser er derfor i stadigt stigende omfang brugt som en integreret del af
risikoanalyser. Men selvom det er fornuftigt at udfare usikkerhedsbereg-
ninger, er det vigtigt at veae opmaaksom pa nogle faldgruber. En usik-
kerhedsanalyse er i sig selv behadtet med en usikkerhed. En ufuldkom-
men usikkerhedsanalyse kan derfor nemt underestimere den virkelige
usikkerhed og dermed bidrage til at model beregningerne fremstar med en
falsk realisme.

Denne rapport beskriver en systematisk fremgangsmade for usikkerheds-
analyser i relation til risikovurdering. Problemet kan i generelle ord blive
beskrevet som et dilemma mellem at ”sige meget om lidt” eller "sige lidt
om meget”. Hvis formalet er at lave detaljerede forudsigelser ("sige me-
get”), sd skal modellen ngdvendigvis veae kompleks, da mange processer
skal inddrages, og der er derfor kun muligt at beskrive er afgraanset sy-
stem ("om lidt”). Omvendt hvis et en mindre detaljeret forudsigelse er
malet ("sige lidt") sd kan modelkompleksiteten begramses og faare pro-
cesser skal inddrages, hvilket ofte vil muliggere beskrivelse af et mere
omfattende system ("om meget”). Dette er et dilemma for en hvilken
som helst forudsigelse, og altsd dermed ogsa for enhver matematiske
model.

Rapporten relatere behovet for beslutningsstette til modelforudsigel ser pa
et konceptuelt plan. Der er fokus pa risikoanalyse af kemikalier, men
konklusionerne er ogsa relevant pa et langt mere generelt plan. To
grundlagggende forskellige kilder til usikkerhed bliver behandlet:

1 Usikkerhed som resultat af at inputsparametre er behadtet med usik-
kerhed (input-usikkerhed), enten p. g. a manglende viden eller fordi
der hersker en naturlig variabilitet

2 Strukturel (model) usikkerhed, der opstar som resultat af de forudsad-
ninger, der ligger til grund for modellen.



10

Input-usikkerheden kan i princippet bestemmes ved forskellige metoder
sa som f.eks. Monte Carlo simuleringer. Ofte kan det dog vaare svaat at
fa de nadvendige information omkring input-parametrenes variabilitet.
Sa resultatet fra selv omfattende Monte Carlo analyser skal tolkes med
varsomhed. Strukturel usikkerhed er pa den anden side principel umulig
helt at kvantificere, fordi det ville kraeve en komplet og reel uopnéelig
viden om systemet. | det omfang der hersker en komplet viden er der ik-
ke brug for nogen model ! S& modellens berettigel se medfarer at det ikke
er muligt at udfegre en komplet analyse for strukturel usikkerhed. | denne
rapport er det dog vist hvordan forbedringer (mindskning) af den struktu-
relle usikkerhed kan beregnes for delbeskrivelser i en model. Udfra dette
er det muligt at svare pa falgende spargsmd: Er der nogen delproces
(delmodel) i modellen, der synes at vaae ungdvendig og edel aaggende for
den samlede usikkerhed. Det kan nemlig let ske at en model, der bestar
af mange delmodeller (meget kompleks) give resultater, der er mere usik-
re end sammenlignet med en mere simple model (mindre kompleks) med
feare delmodeller selvom der maske er klare teoretiske argumenter bag
ale delmodellerne i den komplekse model. En samlet usikkerhedsanaly-
se, der bestemmer bade input-usikkerheden og dele af den strukturelle
usikkerhed, er yderst brugbar til at undersege sddanne forhold omkring
modelkompleksitet.

Meget simple modeller vil typisk kun behave viden om relativt fa og let
tilgeangelige inputsparametre, hvilket betyder at input-usikkerheden blive
begramset. Pa den anden side vil disse simple modeller typisk lide under
en betydelig strukturel usikkerhed fordi en lang rakke restriktive forud-
satninger er ngdvendige for at opna den simple formulering af modellen.
En model er for simpel (underkompleks) hvis den strukturelle usikkerhed
overskygger gevinsten ved den begraansede input-usikkerhed.

De omvendte forhold kan gadde for komplekse modeller. Her vil input-
usikkerheden typisk vaae betydelig fordi de en lang reekke detaljerede
inputsparametre skal fades ind i den komplekse model. Nogle af disse
parametre vil maske oven i kgbte blive fastlagt som "default” veadier i
en erkendelse af at deres aktuelle vaadi er svag at fremskaffe. Den
strukturelle usikkerhed vil derimod veare mere begramset sammenlignet
med en simpel model, da flere processer er inkluderet i modellen, hvilket
igen betyder at det ikke har vaaret ngdvendigt at bruge sa mange restrikti-
ve forudsagninger. En model er overkompleks, hvis input-usikkerheden
overskygger gevinsten ved den detaljerede beskrivelse og deraf f@lgende
lave strukturelle usikkerhed.

| det omfang det er muligt at vurdere modellers kompleksitet, som
ovenfor beskrevet, skulle det vaae muligt at bestemme den optimale
kompleksitet s3 modellen hverken er under- eller overkompleks.

Det er meget vigtigt, men desvaare ofte forsamt, at integrere usikker-
hedsanalyse med behovet for beslutningsstette. Dette skyldes at usikker-
heden vil vokse ndr mere specifik information (hgjere informations ni-
veau) gnskes fremskaffet, som et resultat af at mere komplekse modeller
er ngdvendige. Det er meget vigtigt for en beslutningstager at veare klar
over dette forhold ndr et spergsmdl formuleres. Hvis et spergsmdl blive
fremsat af en bedutningstager pa et hgjere informations niveau end
strengt nadvendigt sa kan det medfere et stort spild af ressourcer i et for-



sgg pa at kommer med en besvarelse uden for stor usikkerhed. Dette for-
hold er blevet formuleret som en slags laaesadning inden for den statiske
legringsteori: Nar et problem skal Igses under mangelfuld viden sa prev
at undga en Igsning af et mere generelt problem (sterre informations ni-
veau, red.) somen del af |gsningen.

En grundig bestemmelse af model usikkerhed er ofte ret ressourcekrae
vende og en bruger af modeller bliver let bragt i en situation, hvor det
ganske simpelt ikke er muligt at foretage en sddan bestemmelse. En mu-
lig lasning af dette problem er en dlags prioriteret tilgang hvor mere
simple screeningsmetoder kan hjadpe til med at fastlagyge usikkerheden i
forbindelse med en konkret modelberegning. Denne rapport fremsaetter
en sadan metode.

Dette arbejde er en del af et starre projekt, der behandler skadnen af
miljgfremmede stoffer i et opland i Danmark (Roskilde). Konklusionen
fra denne rapport danner baggrund for paradigmet bag den matematiske
modellering, der vil blive udfert under dette projekt for fire forskellige
systemer.
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1 Introduction

It is important to raise the scientific insight on emissions, fate and effects
of xenobiotics in the environment. This can be done using predictive
models as an integrated approach involving theoretical studies combined
with empirical knowledge, i.e. field and laboratory experiments.

Such mathematical models are useful as support for making decisions in
environmentally related problems, as they can help to take action before
problems become serious and to evaluate consequences of different fu-
ture scenarios formed by different actions taken. Therefore, model cal-
culations have a central place in the risk assessment of chemicals as e.g.
formulated in the European Union System for the Evaluation of Sub-
stances (EUSES) as described in EUSES (1997).

A complete multimedia fate model system for organic compounds should
describe the cycle of the substances in the environment and a set of main
investigation areas can be formulated according to the following list.

e Sources.

e Primary emissionsto air, (waste) water and soil.

e Secondary emissions from wastewater treatment plant (WWTP) dis-
charges (effluent water and sludge) to air, water and soil.

e Transport and degradation in the environmental compartments and
WWTP (sorption, degradation).

e (Bio) availability

e [Ecotoxicity.

e Human toxicity.

Each area could be formulated as a model comprising a set of processes.
If a process is to be included in the model assessment it must be both
meaningful and informative. A process is meaningful if it relates to a
subject of concern and affects the outcome of the model calculations. A
process is informative if the knowledge with respect to this process is
sufficient, so that the analysis based on this process actually narrows the
uncertainty of the outcome and hence is able to provide understanding
that was not apparent prior to the analysis (Hertwich et al., 2000).

A compartment model will often involve a high level of complexity,
which tends to be associated with a high degree of uncertainty. Thus, the
use of the models needs to be supported with a careful uncertainty analy-
sis, which is one of the major challenges in model application. Uncer-
tainty analysis is more and more widely used as an integrated part of risk
analysis and denoted probabilistic risk assessment. However, even
though the basic principle of probabilistic risk assessment is sound, there
exist some pitfalls to be aware of. It is important to realise that the un-
certainty estimate is uncertain. An incomplete uncertainty estimate can
easily underestimate the true uncertainty and thereby end up with conclu-
sions of false realism. In this report a systematic approach is described to
guide an uncertainty analysis avoiding false realism of the results.

13
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The problem of a systematic uncertainty analysis has been investigated
by several authors as Costanza and Sklar (1985), Jargensen (1994),
Hakanson (1995) and Payne (1999). All these references focuses on eco-
system modelling. A systematic approach for uncertainty is given by
Hertvich et al. 2000 having focus on fate and exposure models. In case of
more integrated policy models an approach for uncertainty analysis is
made by e.g. Kann and Weyant (2000). The problem all of these refer-
ences address can in general terms be formulated as a duality between
models which “Say much about little” and models which “Say little
about much” (Costanza and Sklar, 1985). If the goal isto make a detailed
prediction (“to say much”) by a model then the model needs to be so
complex in order to take many processes into account that only a limited
system (“about little”) can be described. On the other hand, if less de-
tailed predictions are the topic (“ Say little”) then the model complexity is
more limited and it will be possible to say something about a larger sys-
tem (“about much”). This is the dualism in any prediction and thus also
for mathematical models. This report will relate the decision support
problem to mathematical modelling on a conceptual basis. The focus will
be risk assessment of chemicals but the relevance will be broader and
covers decision support based on mathematical modelsin general.

As a conclusion of the report guidelines for model evaluation will be
given in the end using more or less resource demanding methods.



2 Uncertaintiesin modelling

2.1 Two typesof uncertainty

Morgan et al. (1990) (cited by Hertwich et al., 2000) distinguish between
the uncertainty in empirical quantities, defined constants, decision vari-
ables, value parameters, model domain parameters and outcome criteria
arising from random error, statistical variation, systematic error, subjec-
tive judgement, linguistic imprecision, variability, true randomness and
disagreement between experts. A simpler framework developed by
Finkel (1990) distinguishes between decision rule uncertainty, model un-
certainty and uncertainty and variability of input parameters. Decision
rules specify the goals and methods of the analysis and decision rule un-
certainty arises whenever there is ambiguity about how to choose an ap-
propriate measure to quantify or compare social objectives, i.e. what
methods to use to evaluate specific impacts.

In this project two basically different sources of uncertainty will be con-
sidered (Costanza and Sklar (1985), Jargensen (1994), Hakanson (1995)
and Payne (1999)):

1 Input uncertainty. Uncertainty of input parameter values which arises
from missing information about actual values, and results in low pre-
cision. This is partly a consequence of estimation error and partly a
consequence of the variability, or stochastic uncertainty arising from
statistical variance that again derives from random factors or natura
heterogeneity in the model input parameters.

2 Sructural (model) uncertainties arise from the fact that every model
is a simplification of reality and the mathematical expressions are ap-
proximations for real systems due to alimited systemic knowledge.

Simplifications such as a reduced number of removal mechanisms, e.g.
volatilisation is considered negligible compared to bio-degradation, or
assumptions such as uniform mixing, constant emissions in time or
steady-state conditions will act to increase the structural uncertainties. To
evaluate the influence of model structure, different model set-ups must
be developed for the same application. In some cases when optimum
model structures are sought the increase in structural uncertainty will be
justifiable if the input uncertainties are reduced.

Figure 1 illustrates the uncertainty relationships in a complete environ-
mental modelling system for risk assessment of organic contaminants.
Both structural and input uncertainties are introduced on all levels. The
input uncertainties are accumulated from one model to the other while
the structural uncertainties act individually at each modelling level.

15
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|: Structural uncertai nty
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Figure 1. Uncertainty relationships in a complete environmental modelling system
for organic contaminants. The dashed line box is the area of more detailed analysis
in the investigation of Fauser, P. (2000), Sarensen, P.B. (2000a), Sarensen, P.B.
(2000b) and Vikelsge, J. (2000).

The input uncertainty can in principle be solved in most cases either
analytical or more often by using a Monte Carlo type analysis as done by
Hertwich et al. (1999) for exposure models. In practise, however, it can
be difficult to get the necessary information about the variability of the
input parameters and results from Monte Carlo calculations needs to be
interpreted with caution due to this problem.

The structure uncertainty is more problematic to quantify. Payne (1999)
applies theory from the statistical learning theory as developed by Vapnik
(1995). This theory sets up the upper bounds on the amount of uncer-
tainty, including the structure uncertainty. However, the methodology is
only applicable for specific types of models and thus not directly useful
in a genera form. Costanza and Sklar (1985) developed a more applica-
ble method, which is more pragmatic and thus not so mathematical well
defined. The model articulation level is defined in Costanza and Sklar
(1985) based on several key properties for model complexity, where high
articulation level is associated with high complexity level. The way the
articulation level is calculated relays on more or less subjective judge-
ments and there is no general and objective way for calculating a unique
number for articulation level.



2.2 Uncertainty bottle neck

Even though the total uncertainty system seems complicated, there will
typically only be a few dominating sources of uncertainty. The law of
uncertainty accumulation can identify these

A2 =N+ A+ AL (1)

where Aya 1S the total or resulting uncertainty and A; , A, and A3 are the
uncertainty contributions from different sources. Aiqa Can be defined for
a single model or a set of sub-models, and A, can be uncertainties con-
nected to input parameters or to individual sub-models. If al uncertainty
sources are known the values can be ranked according to: A; > A, > Az
>... and equation 1 rewritten as

2 2
A A
Ay =A - 1+ =2 | +| == + ... 2
s ) o

This equation shows that the sources associated to the largest uncertainty
values will tend to dominate more than their actual values indicate. Lets
consider a numerical example where there are totally 11 sources of un-
certainty having the values of:

Aq: 0,1
AZ'All: 0,025

So in this case one source of uncertainty induces a variation of 0,1 and 10
other sources induce a variation of 0,025 each. Intuitively, it should be
expected that the 10 smaller contributions of uncertainty do have a rather
large influence on the total uncertainty because their values are not very
much smaller than A;. However, using Eq. 2 the total uncertainty is cal-
culated to be Aia=0.13, which only differs from the single uncertainty
source A, by 30 %. If the uncertainty should be improved in this system
by removing one or more of the uncertainty sources two alternatives can
be considered: (1) removing of only A; or (2) removing of all the uncer-
tainty sources A,-A;;. The first aternative will reduce the uncertainty
from 0.13 to 0.08, while the second alternative will reduce the uncer-
tainty from 0,13 to 0,1. So the elimination of only A; will improve the
uncertainty nearly double so much as an elimination of all the uncertainty
sources Az-Aq1. Hence, according to equation 2, ‘uncertainty bottle neck’
will often exist in the model system, which will account for most of the
total uncertainty.

The example indicates that great care must be taken where to allocate re-
sources to improve the model structure. A model can be said to be dis-
cordant (inharmonious) when some parts of the model operates with a
relatively low uncertainty while other parts of the model includes a
higher level of uncertainty. In a discordant model minor uncertainty
sources have been improved at the expense of major uncertainty sources.
However, if all information needed for an existing discordant model is
available then the model can be used without consideration as a ‘best

17
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obtainable knowledge approach’. The problems arise if such a model is
used to identify data necessary for the decision making, because re-
sources are wasted on collecting superfluous information. Furthermore, a
discordant model can easily produce conclusions of false realism when
detailed parameter studies of low uncertainty sources are considered
when the emphasis should be on other parts of the model.

2.3 Ranking of completity level

The missing unique scale for quantifying complexity articulation level of
mathematical models is a general problem in a systematic uncertainty
analysis. In some casesit is possible to rank the complexity level for ase-
ries of models and thus avoid the need for an absolute complexity scale.
An example of a complexity ranking is shown in Fig. 2 using a polyno-
mial type of model. In general: If model 2 can be considered as a sub set
of model 1. Then model 1 has a higher complexity than model 2. E.g. in
Fig. 2 model 4 isasub set of model 3 which again is a sub set of model
2 and model 2 is a sub set of model 1. Thus, it is possible to order the
modelsasdonein Fig. 2.

Higher complexity

. —_ 3 2

model 1:y=a, X +a, X +a, X+a,
. - 2

model 2:y=a, x°+a, X+a,

model 3:y=a, Xx+a,

model 4:y =a,

Lower complexity

Figure 2. An example of ranking modelsin relation to the complexity level.

The needed knowledge in Fig 2 about input parameter values becomes
more resource demanding as the complexity increases because the num-
ber of coefficients increases. It is a general tendency for mathematical
models that increasing complexity yields an increasing demand of a pri-
ori knowledge. In fact no knowledge is completely certain. Thus, any in-
crease in the demand of a priori knowledge will include additional input
uncertainty.

The ranking with respect to complexity isillustrated in the following us-
ing the model analysisin Sarensen et al., (2001a) for the water/sediment
concentration in a lake/marine area. The focus is the removal processes
other than hydrodynamic removal (convection) and removal by evapora-
tion. Three possible removal processes are leaved in form of: (1) degra-
dation (degr), (2) Deposition to the sediment surface (dep), and (3) Dif-
fusion into the sediment (diff). Furthermore in relation to EUSES the
diffusion is described using a so-called thin film (layer) diffusion (diffsm)
approximation in order to simplify the model equations. Obvioudly,
diffsm is a specia case of the more general phenomenon diff, which is
shown in Sarensen et al., (2001a). Thus, it involves a higher complexity
level to describe diff compared to diffs,,. The processes can be combined



to form a serious of models and these models will have different com-
plexity levels depending on the processes included. The model using
degr + diff will in this way be ranked above the model using only diff. It
is then possible to make a partial ranking of the models with respect to
the complexity levels as shown in Fig.3.

Model complexity Included terms
level
4 degr + dep + diff
3a degr + dep + diff
3b degr + diff
3c dep + diff
2a degr +dep
2b degr + diff .
2c dep + diff ;.
2d diff
la degr
1b dep
1 C dlff film

Higher complexity
Higher input uncertainty Hasse diagram:
Lower structural uncertainty

A

Figure 3. Ranking of the model to calculate water concentration in marine areas or lakes focussing
on the removal processes. (1) Degradation (degr), (2) Deposition on the sediment surface (dep), and
(3) Diffusion into the sediment (diff or diff;,,). The ranking criteria are described in the text. The
Hasse diagram shows all the possible rankings between the different models as lines, where upwards
means high rank (high complexity) and downwards means low rank (low complexity). Thus 4 is above
3a and 4 is above 2a because 4> 3a and 3a>2a, but 3ais NOT compared with 3b.

In EUSES the removal is described using the relationship: degr + dep +
diffsm(model 3a) and this model is seen to be ranked below the model 4
because the diffusion is described as a thin film diffusion process. The
structural uncertainty is increased for every step downward along a line
so model 3b will have higher structural uncertainty compared to model 4.
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On the other hand step downward will in general yield lower input-
uncertainty and a model, which is less, complicated to handle mathe-
matically. This is the argument for selecting model 3b instead of model
4.

The conclusion in Sgrensen et al., (2001a) is that the diffusion processis
not well described by the thin layer diffusion approximation. It is also
shown that often the removal by diffusion (diff) can be neglected com-
pared to the removal by deposition (dep). Thus, a step downward in the
Hasse diagram in Fig. 3 from 3ato 2ais beneficial because it will reduce
the complexity and thereby reduce both the input uncertainty and the re-
sources demand for the model to be used without increasing the struc-
tural uncertainty remarkable.



3 Theconcept of obtimal complexity

Some complexity is needed for any prediction and an increase in com-
plexity enhance the opportunities for a closer and thus more certain de-
scription of reality (decreased structure-uncertainty). So there seems to
be a dilemma between the demand of low input uncertainty (low com-
plicity) and a low structural uncertainty (high complexity). The optimal
model structure based on the actual a priori knowledge is a compromise
between these two sources of uncertainty. The model structure can be
optimised through a mutual evaluation of the input and structural uncer-
tainties. The problem is to quantify the uncertainties, where especially
the structural uncertainty can form a problem as discussed above. How-
ever, by using the concept of relative complexity it may under some cir-
cumstances be possible to identify the optimal model complexity as ex-
emplified below.

The principleisillustrated in the following, where three different models
are mutually ranked with respect to complexity as illustrated above. The
example of uncertainty analysis is based on the work of Vikelsge et al.,
(2001) and the details is shown in Appendix A. The problem in the ex-
ampleisto calculate the dissolved water concentration at a specific depth
below the sediment surface. The depth is chosen to be 1 cm and only
steady state conditions are considered. Three different models having
three different complexity levels is formulated for the same problem and
uncertainty is calculated for each model. However, as pointed out earlier
the structural uncertainty is difficult to quantify so the relative structural
uncertainty (relative to the most complex model) is calculated instead.
The calculation of the relative structural uncertainty is described in the
Appendix and illustrated in Fig. 3A in appendix.

The results of the analysisis shown in Fig. 4, where the two types of un-
certainty is shown for the three models, which are ranked in relation to
the level of complexity. The simplest model (model 3) does not include
any processes and thus simply assumes the water concentration in the
sediment to equalise the water concentration in the water column. The
input uncertainty is therefore equal zero under these circumstances. The
best model is seen to be model 2, which includes deposition and degra-
dation but neglects diffusion.
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Complexity
Absolute structural uncertainty

for Model 1

0.13 |

<
o)
o
@
>

Additional structural uncertainty:

rb Model 1 —Model 2=0.02
Model 2:

0-5.9C_k ¢

dz R
Additional structural uncertainty:
’—V Model 1|— Model 3=0.24
Model 3: |
0-s.9C ]
dz
>
Uncertainty: (absolute structural) +(absolute input)
>
_ Uncertainty: (Additional structural) + (absolute input)
Signature:

[ Structural uncertainty [ ] : Input uncertainty

Figure 4. Thisis a lllustration of complexity ranking, where a series of models are identified as
subsets of each other. It is not possible to quantify the absolute structural uncertainty for model 1.
But, it is possible to determinate the increase in structural uncertainty (additional structural un-
certainty) between the different models asillustrated by the dashed line. For the optimal model the
sum of the additional structural uncertainty and the input uncertainty is minimal (model 2 in this
case).

However, in praxis the principle is difficult to use in real uncertainty cal-
culations due to difficulties in quantifying the complexity. The problem
of quantifying complexity is solved in the example above by ranking the
model complexity as described in Fig. 4, where different number of terms
are added in the governing differential equations. In this way it is only
possible to place the different models on the complexity level axisin Fig.
5 relative to each other. However, it will still be possible to keep the con-
cept of a continuously scale for complexity in order to develop a method
which can help to select the “best” model from possible aternatives
having the lowest total uncertainty.

The structure uncertainty is difficult to quantify completely, but it is not
necessary to make a complete quantification in order to find the optimal
model complexity. In the example above only the differences in structure
uncertainty values are calculated as the value difference between the
most complex model (Model 1, having the lowest structural uncertainty)
and the other models (Models 2 and 3). In this way the quantified part of
the structure uncertainty for the Models 2 and 3 is the addition in struc-
ture uncertainty when either Model 2 or 3 replaces Model 1. By using



this principle, the total uncertainty, as illustrated in Fig. 5, will be re-
placed by the fraction of the total uncertainty formed by adding the input
uncertainty to the differences in structural uncertainty between Model 1
and Model 2, and between Model 1 and Model 3, respectively. The re-
duced total uncertainty will become equal to the input uncertainty for
Model 1 simply because the reduced structure uncertainty is zero in this
case.

Payne (1999) discusses the relationship between uncertainty and com-
plexity level in general terms as illustrated in the example above. The
problem isillustrated graphically in Fig. 5.

Uncertaint .
y Total uncertainty

4 Input uncertainty

Minimal uncertainty

Structure uncertainty

>
Complexity level

N/

Optimal complexity level

Figure 5. The relationship between the structural uncertainty and the input uncertainty. Vapnik
(1995) shows similar relationships.

Fig. 5 is a principa figure, which summarises the conclusion, in this
chapter. The input uncertainty is claimed to increase and the structure
uncertainty is claimed to decrease as the model complexity is increased.
Obvioudly, the resulting total uncertainty will tend to have a minimum
value at the optimal complexity level yielding the lowest total uncer-
tainty. This figure represents a systematic paradigm for model evaluation
and will form the basisin the tiered approach for uncertainty analysisin a
coming chapter.

The use of complexity rank and reduced structure uncertainty is illus-
trated in Fig. 6, where the three Models 1, 2, and 3 are shown for illus-
tration. The actua placements of the three models on the complexity
scale are unknown. However, due to the complexity level rank as Model
1> Mode 2> Model 3 it must be true that the position of Model 3isat a
lower complexity level than the optimal level and Model 1 needs to be
placed at a higher complexity level than the optimal level. This is true
because the total reduced uncertainty for Model 2 is lower than for the
two other models.
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the true and reduced
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Uncertainty
A

True total uncertainty

Fraction of the total un-
certainty

Input uncertainty

True structure uncertainty

\"‘“m —
— \/

Model 3 / Model 2 Model 1 Complexity level
Optimal level of

, Sructure uncertainty difference
complexity in relation to Model 3

T = >

Figure 6. The interpretation of the resultsin Fig. 4, where three model complexity levels are analysed using the
principle shown in Fig. 5 including the concept of complexity level ranking and additional structure uncertainty.
The actual position of the Models 1, 2 and 3 are arbitrary, but the Models 1 and 3 are placed respectively above
and below the optimal complexity level and Model 2 represents the best choice of complexity level among the

three models.

It may not be obvious that the minimum value of the true total uncer-
tainty and the fraction of the total uncertainty relates to the same optimal
level of complexity. However, this will aways be true because the de-
viation between the true and the fraction of the total uncertainty is con-
stant for all levels of complexities.



4 Therelation ship between information’s
level of model result and uncertainty

The model structure uncertainty depends on the choice of the outcome,
I.e. what question needs to be answered and thus the amount of informa-
tion (knowledge) that is required from the model. In the shown example
the gquestion was about the steady-state concentration at a depth of 1 cm
in the sediment and it was not the most complex model that had the
smallest total uncertainty. If the demand of information increases in the
guestion to comprise the concentration change in time in the depth of 1
cm, the diffusion will play an important role and model 1 will probably
be needed. In the immediate upstart of the system, i.e. for t = O, the con-
centration gradient will be large at the sediment surface and the substrate
flux to the sediment will be governed by diffusion and not by sedimenta-
tion. After a number of days the amount of substrate originating from
sedimentation will dominate. In Sarensen et al. (2001a) the change in
process kinetics is described.

The input uncertainty curve is identical to the one with a lower informa-
tion level, whereas the uncertainty curve for the model structure has in-
creased caused by the need of more complex structures to answer for the
desire of more detailed information (higher information level). This is
very importance to realise for a decison-maker that asks an ‘expert’
about a prediction to support a decision. If the question is formulated to
the expert at a higher information level than strictly necessary for the de-
cision then alot of resources can easily be wasted. This problem isillus-
trated in Fig. 7 and has been formulated in the statistical learning theory
for problem solution using a restricted amount of information as. When
solving a given problem, try to avoid solving a more general problem as
an intermediate step (Vapnik, 1995).
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Uncertainty

Information level

Total uncertainty

Input
uncertainty

Structure
uncertainty

A

" Complexity
level

Uncertainty

Input
uncertainty

Total
uncertainty

Structure
uncertainty

»

Figure 7. Influence of level of information on the optimum model structure com-

Complexity
level

plexity. Smilar relationships are discussed by Vapnik, (1995).

When mathematical models are needed to support decision-making it is
critical to be aware of this close relationship between the needed infor-
mation level of the result and the uncertainty of the prediction. A dialog
Is important between the model designer/developer and the model user.
Unfortunately, in the process of model development the model user (de-
cision maker) sets up the goal (question to be answered at a given infor-
mation level) and then subsequently the model designer tries to fulfil the
goals as good as possible without any dialog with the model user. It can
easily happen that the model results turns out to be very uncertain, but a
dlight reduction in the information level of the results (Iless ambitious

model answer) may improve the result certainty dramatically.



5 Tiered approach for uncertainty analy-
Sis

A close evaluation of model uncertainty is in genera a rather resource
demanding task and in reality the user of a model can easily be brought
into a situation where a model have to be used without the possibility for
such an evaluation. A possible way to deal with this situation can be to
use a kind of tiered approach where more easy screening methods can
help to identify model uncertainty in relation to a specific problem. A
guideline for such an approach is shown in Figure 8 and will be ex-
plained in the following.

Sep 1. The formulation of the problem to be solved in terms of a ques-
tion to answer is crucia for the following choice and evaluation of the
model. It is therefore important to make a precise formulation of the
guestion.

Sep 2. The model is selected based on expert judgement, which again is
based on reported validation results and an evaluation of critical assump-
tions. The magnitude of the structural uncertainty needs to be quantified
so much as possible. The structural uncertainty is difficult to quantify
however, some kind of judgement is necessary and in most cases possi-
ble.

Sep 3. As afirst approach afew model calculations are done using rela-
tively few different combination of realistic input parameters. There will
often exist an a priori knowledge, about which of the input parameters
that are the most important for the model and about an interval of varia-
tion, which is smaller than the true variability. If the variation of input
parameter values in this analysis yields results of unacceptable high un-
certainty then is possible to reject the model as a candidate for valid cal-
culations.

Sep 4. If the model uncertainty was acceptable in step 3, the next step
will be to over estimate the input-uncertainty, where unrealistic varia-
tions is applied to the input. More effort is needed in this step compared
to step 3 but in many cases it will be a rather easy task to set up an over
estimation of the variability intervals. If the input-uncertainty is accept-
able then the model prediction will be valid otherwise more detailed and
thus also much more resource demanding uncertainty analysis needs to
be applied.

Sep 5 a. The model is acceptable and can be used to answer the ques-
tion. There may exist a more complex model which can make an answer
at a higher information level than the actual question.

Sep 5 b. A detailed uncertainty analysis is made for input-uncertainty.
The information needed is knowledge about the distribution function for
input-parameter variability, which can be used in a Monte Carlo ssimula-
tion. In some cases a sensitivity analysis can be used before the Monte-
Carlo analysis to identify the parameters for which the model is most

27



sensitive. Such a sensitivity analysis can help to focus the MonteCarlo
analysis and thus minimise the resources needed.

Reformulate Step 1
the question to g
be lessinfor- Formulate the question to be answered
mative i
A
Step 2
Review other _ . _
model princi- Selection of model in relation to:
ples having L - Validation resultsin literature
lower com- - Evaluation of critical assumptions
plexity _ _ _
Estimate the magnitude of the structural uncertainty
A

!

Calculate using different input-parameter values
within known variation intervals.

Step 3

Under estimate input variability

¥ i

I's the observed variability in the result
acceptable compared to the structural
uncertainty level?

i Yes
No

Chose one of the
two possibilities

Step 4
Isthe observed variabil- Use extended variability intervals for the input-
ity in the result accept- parameters in model cal culations.

able?

Over estimate theinput variability

Yes \
Step5b

Isthe observed variability in the
More detailed investigations No result acceptable?
(Monte Carlo) using knowledge <
about the distribution of input-
variability is needed. Yes

Step5Sa

The model can be ac-
cepted as useful for the
pur pose

Figure 8. The guideline for a tiered approach in the model evaluation.
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Emission survey

6 Pergpective in relation to a specific xe-
nobiotic fate analysis

Thisreport is a part of a project where models are evaluated for four spe-
cific systems, each one being a part of an overall system describing the
flow of xenobiotics in Roskilde municipality and catchment area (see
figure 7). The models is discussed in relation to their harmony (Same
level of uncertainty in all parts of the model) and their Input/structure
uncertaintyes (The input uncertainty is related to the structure uncer-
tainty). Theresultsis summerised in Carlsen et al. (2001).

Survey
Model 1
Model 2

Sources and emissions of the xenobioticsin question.

Fate of substances in Roskilde WWTP (Fauser et al. 2001).
Fate of substances in Roskilde Ford (water and sediment)
(Vikelsge et al. 2001 and Sarensen et al. 2001).

Model 3 Fate of substances in sewage sludge amended soil.

Inlet model

A A
p ol

Households

and service

—_——
Surface runoff

WWTP model ¢ ’

Sewage
Sudge
Treated water

Figure 7. Schematic overview of modelling system.

These four models can be used separately; however, the combined ap-
proach permits an integrated uncertainty analysis of the tota emis
sion/fate modelling system. The emission survey gives input concentra-
tions to the WWTP, the effluent water and digested sludge from the
WWTP provide input data to Roskilde inlet and the field plough layer re-
spectively.

The product will be risk assessment models designed to estimate Pre-
dicted Environmental Concentrations (PEC) of LAS, 6 different phtha-
lates, nonylphenol and nonylphenol diethoxylate in the water and soil
compartments. Experimental data, generated from laboratory experi-
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ments and in-situ monitoring studies provide data for calibration and
verification of the models. They act as a tool to estimate the Predicted
No-effect Concentrations (PNEC) and in this way help to decide whether
or not a substance presents arisk to the environment.
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Appendix A: Example of quantifying uncer-
tainty

As an illustrative example, the optimum model structure is sought for in
a scenario involving transport and degradation of a hydrophobic, slowly
degradable substrate in the sediment compartment in a water-sediment
system corresponding to the Fjord model described in Vikelsge et al.
(2000).

Three different models having three different complexity levels will be
formulated for the same problem. So the analysis will be based on ranked
complexity as illustrated in Fig. 4. This example will show how the in-
put- and the structural uncertainty, respectively, interacts in relation to
the total model uncertainty.

The following assumption are made

Steady-state. i.e. aa—(t: = 0. A detailed analysis of this simplification

can be found in Sarensen et al. (2000).
e 1% order degradation of dissolved substrate (k).

e Equilibrium between adsorbed and dissolved substrate, described
through the equilibrium partition coefficient Kg.

e Constant pore water volume, 6, and thus concentration of particulate
matter, X, in sediment. The retention factor, R = 6 + X - Kq, will
therefore also be constant throughout the sediment profile.

e Vertical molecular diffusive flow (D).

e Constant sedimentation (solids deposition) rate at the sediment sur-
face (S).

The structural, input and total uncertainties related to the steady-state
dissolved concentration at a depth of 1 cm will be calculated for the three
models.

Each input parameter is associated with an (input) uncertainty expressed
as a standard deviation

Adsorption: R =10600 £ 1000
Degradation: k;=2-10°+5-10° sec™
Diffuson:  D=10°+5.10" m? - sec™
Sedimentation: S= 2.5+ 0.5 mm - year™

The dissolved pore water concentration in the surface layer isCy =1 ng -
liter™.
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Model 1: The more complex model. So, the relative structural uncer-
tainty is calculated based on this model (like model 1 in Fig.
4). The model comprises adsorption (R), degradation (kj),
diffusion (D) and sedimentation (S).

The concentration profile is expressed through the linear, one dimen-
sional and homogeneous 2™ order equation

a_C:

0= .d€¢ g dC Kk C 3)
o R

the solution being (Vikelsge et al., 2000)

SR [(SRY . Kk
- . - +_* |z
D- D2) D

N

Crode 1(2) = Cp - e[ (4)

The mean concentration, Creanmodel 1, Which is equal to the exact concen-

tration, Cexat, IS found from n = 2000 random Monte Carlo type selec-
tions of the normally distributed input values and insertion in Equation 4.

C -C zl.ic = 0.7667 X9
mean,model 1 exact n & i,model 1 I|ter

Model 2: Includes adsorption (R), degradation (k;) and sedimentation
(S). The diffusion processis omitted in relation to Model 1.

The concentration profile is now defined by
—~=0=-S.—=-2%. C (5)

with the solution

-ky-z

Croda 2(2) = C - SR (6)

and a mean concentration

1 n
Cmean,modd 2 = H ) ;Ci,model 2 = 0.7810 %

Model 3: The most ssmple model. Only adsorption (R) and sedimenta-
tion (S) are considered and the steady-state concentration pro-
filewill therefore be constant and equal to C.

c _ 1 M9

mean,model 3 T .
liter



The three models can be ranked in relation to the complexity level asil-
lustrated in Fig. 5

Higher complexity

A 2
0-DdC g dC k
R dz dz R
0= s.9 ki .
dz R
0 g.9¢
dz

Lower complexity

Figure 1A. Ranking of the three modelsin relation to their complexity.

The structural uncertainty is the difference between the exact concentra-
tion and the mean concentration of model 1, 2 and 3 respectively

Aaructure = C@(act - Cmean, model (7)

The input uncertainty is the standard deviation of the random concentra-
tions compared to the mean concentration of model 1, 2 and 3 respec-
tively

1 n
Ainput = \/ Z(Cmean,modd - Ci,mode| )2 (8)

n-1 g

The total uncertainty can be calculated according to the law of uncer-
tainty accumulation, cf. Equation 1. It can also be expressed as the stan-
dard deviation of the random concentrations compared to the exact con-
centration

Atoa = \/ L i(cpxact = Ci mode )2 ©)

n-1 &

In Table 1 and Figure 6 the uncertainties are compiled for each of the
three models.
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Table 1 Structural, input and total uncertainties for 3 different models of
varying complexities. The models cal cul ate the steady-state concentra-
tion at adepth of 1 cm in the sediment. Unitsin ug - liter™.

Model 1 Model 2 Model 3
Structural uncertainty 0 0,02 0,24
(Equation 7)
Input uncertainty 0,13 0,07 0
(Equation 8)
Total uncertainty 0,13 0,07 0,24
(Equation 9)
0,25 -
=
5 0,2 & Structure
'f M Input
g 0,15 O Total
2‘\
c 0,1 —
B
o J
)
0 1 1 1
M odel 3 M odel 2 M odel 1

L evel of complexity

Figure 2A. Structural, input and total uncertainties for 3 different models of varying
complexities. The models calculate the steady-state concentration at a depth of 1 cm
in the sediment.

The model complexity decreases from model 1 through 3 and accord-
ingly the structural uncertainties increase from zero to approximately
0.238 for model 3. As previously noted model 1 is considered to produce
the exact result but in reality thisis not true and the structural uncertainty
associated with model 1 will be different from zero, but still smaller than
model 2 and 3. The more complex model 1 requires more input data and
therefore the input uncertainty islarger than for model 2 and 3.

The differences in structural and input uncertainties between model 1 and
2 arise from the influence of diffusion. At a depth of 1 cm the substrate
mass arising from molecular diffusion is larger than deeper down in the
sediment which implies that the differences in structural and input un-
certainties between model 1 and 2 are larger closer to the sediment sur-
face, cf. Equations 7 and 8. At larger depths, below approximately 0.5 m,
the deviation between the output from model 1 and 2 is negligible and
accordingly the structural, input and total uncertainties are identical.
However, model 1 still requires more information about the input pa-
rameters, i.e. the diffusion coefficient.



The calculated dissolved concentrations at a depth of 1 cm in the sedi-
ment are thus

Cinode 1 = 0.7667 + 0.1330 g - liter™
Cinodel 2 = 0.7810 + 0.0699 g - liter™
Cinodei 3= 1+ 0.2376 g - liter™

The distribution functions are shown in Figure 7.

o7 — Model 1

5 7 — Model 2

4 —+ Astructure(model 2) — Model 3

3 Astructure(model 1)

2 7 Ainput(model 3)

1+ <

0 e \*4 —
0 0s5 Cexact 1 1;5 2

Concentration [ug * liter-1]

Figure 3A. Probability distribution functions for the steady-state dissolved pore
water concentration 1 cmin the sediment. The standard deviation is the total un-
certainty.

The optimum model structure for describing the actual problem is there-
fore model 2. The accuracy is lower but the precision is higher than
Model 1. Model 2 is simpler and requires less input information and is
eas er to use as a mathematical tool.
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