

Hindcasting of precipitation and river hydrology

Hypothesis

- Mean annual precipitation has changed during the last century.
- River discharge will reflect these changes both annually, seasonally and in the case of extremes (peak flows, droughts).
- A gradient in precipitation and hence changes in discharge can be expected across Denmark.
- Changes in land use during the last century (arable land, drainage, urban areas, groundwater abstraction) could counteract or accelerate the climate signal on river hydrology.

	Period	Catchment	
		Area	
in the second			
		(km^2)	
Western Jutland			
Brede Å	1921-2001	290	
Ribe Å	1934-2001	675	
Skiern Å	1920-2001	1055	
Northern Jutland	1720 2001	1000	
Lindenborg Å	1925-2001	214	
Lindholm Å	1917-2001	106	
Årun Å	1936-2001	105	
Hagerby Å	1917-2001	153	
Fastern Jutland	1717-2001	155	
Cudenå Åstadbro	1017 2001	184	
Gudenå, Asteubio	1017 2001	104	
	1010 2001	1202	
Allus A Eunon	1919-2001	119	
Funen A	1017 2001	202	
D L Å	1917-2001	302	
Brende A	1918-2001	/1	
	1010 2001		
Saltø A	1918-2001	64	
Tude A	1932-2001	148	
Harrested A	1921-2001	16	
Susă, Holløse	1934-2001	763	
Åmose Å	1920-2001	292	
Tryggevælde Å	1917-2001	129	
National Environmental Research Institute Department of	of Freshwater Ecol	ogy	

Other factors than climate influencing changes in runoff

- Land use changes during last century (drainage, urban development, agriculture, forest).
- Changes in drinking water and irrigation water consumption.

• Department of Freshwater Ecology

tal Research Institute

River morphology and sediment transport

Hypothesis

- River morphology will adjust to changes in climate and hydrology.
- Adjustments will take place during and for a period following climate and hydrological changes before the river again will be in a dynamic equilibrium.
- Sediment transport will increase due to higher erosion and transport capacity/competence.
- Bank and bed erosion will increase.
- Substratum composition will change.

National Environmental Research Institute • Department of Freshwater Ecology

Regime models for undisturbed Danish streams in downstream direction

ł	Stream width	
4	Moraine landscape:	w = 4.83Q ^{0.61}
	Outwash plain:	w = 5.59Q ^{0.50}
1	Stream depth	
	Moraine landscape:	d = 0.52Q ^{0.47}
	Outwash plain:	d = 0.60Q ^{0.39}
	Current velocity:	
	Moraine landscape:	v = 0.40Q ^{-0.08}
	Outwash plain:	$v = 0.30Q^{0.12}$

Mernild (2002) MSc Thesis, University of Copenhagen.
National Environmental Research Institute

Department of Freshwater Ecology

Stream ecology

Hypothesis

- The changing hydrological regime in streams will impact the spatial and temporal extent of physical habitats and hence influence the biotic conditions.
- The more extreme hydrological conditions in streams, both high flow and low flow, will create larger physical disturbances with adverse impacts on the biological structure and diversity.
- Rising stream water temperature will impact the species composition of macrophytes, invertebrates and fish in Danish streams.
- Indirect impacts on stream ecosystems will also occur caused by changes in catchment pressures (substances), concentration of dissolved oxygen in stream water, etc.

