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Abstract:   Within the American Society for Testing and Materials (ASTM) a Standard Practice (Z6849Z 1)
is being developed to provide an objective statistical procedure for comparing air quality simulation
modeling results with tracer field data.  The practice is limited to steady-state local-scale transport from
isolated point sources in simple terrain.  Evaluation data having similar external conditions are grouped
together, and comparisons are made of the model’s ability to replicate without bias the average of the
centerline maximum concentrations for each group.  Centerline concentrations measured during three field
studies are compared with estimates from three steady-state plume models (ISC, HPDM, and AERMOD).
These results combined with those presented in Irwin and Rosu (1998) provide a complete examination of
the draft ASTM Standard Practice under development.  It is concluded that the evaluation methodology is
capable of objectively discerning differences in skill between models in their ability to estimate the
centerline maximum concentration.
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1 Introduction

Statistical evaluation of model performance is viewed as part of a larger process that collectively is referred to as
model evaluation.  Two major considerations in developing the statistical comparison measures were that
deterministic steady-state dispersion models provide estimates of the average concentration for the specified
meteorological conditions, and that the large differences seen in comparisons of model predictions and observations
of atmospheric air concentrations may largely reflect an inherent uncertainty caused by the stochastic nature of
turbulence within the atmosphere.  This component of the variance was considered inherent because it cannot be
reduced significantly by improving the physics of the air quality models.  The goal of the practice is to:

(1) determine which model’s results are closest to the observed average result, and to
(2) determine which model’s results are significantly different from the results of the model identified in
(1) using an objective statistical significance test.
To compare simulation results with an observed average result, the practice begins by stratifying the

experimental observations into regimes, where one can reasonably argue that the physical processes affecting the
dispersion are similar.  A regime is an estimate of an ensemble.  Here ensemble refers to the infinite population of
all possible realizations and is developed from a set of experiments having similar external conditions, which in
practice we have but a small sample to work with.  Model performance is then assessed by the ability of the model
to replicate without bias the regime’s characteristics (such as the average maximum, average lateral extent, or
average crosswind integrated concentration).   For each regime, we can compare the average of a model’s estimates
with the average derived from the group of observations.  From a summary of these results across all the regimes,
we determine (1) as the model with the smallest combined value of the average absolute fractional bias and variance.
From a statistical test of the differences seen in the summary (absolute fractional bias and variance) across all
regimes, we determine (2).

To illustrate how the evaluation methodology would work, the draft Practice describes how comparisons
could be made of model performance in estimating the average maximum centerline concentration.  In the
discussion that follows, we investigate the results obtained when the suggested evaluation methodology is
implemented.
                                                     
* On assignment to the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency
1A review copy of the draft practice is available from the author upon request.
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Irwin and Rosu (1998) tested various aspects of the draft practice up to and including the manner in which
the experimental data should be processed in order to select receptors suitably close to the observed center of mass
such that one could assume the observed concentration is representative of the centerline concentration.  It was
determined that a robust way to combine observed concentrations along arcs within a given regime was to use the
computed center of mass from each arc as a common reference point.  They found that by expressing the receptor
positions relative to the center of mass seen for each experiment, the results from all the experiments within the
regime could be combined.  Once grouped in this manner, a lateral dispersion can be computed for all the results in
the regime.  This regime lateral dispersion, σy, can then be used to define for each experiment which receptors are
close (within ±0.67σy) to the center of mass.  The statistical properties derived from concentration values from these
receptors are considered representative of centerline concentration values.

Bootstrap resampling is used to compute the average statistical properties of the observed and simulated
centerline concentration values (averages and standard deviation of the averages).  Resampling is also used to
compute the statistical properties of the differences to be seen between the simulated and observed average
centerline concentration for each regime.  From a numerical experiment, Irwin and Rosu (1998) concluded that
bootstrap sample sizes ranging from 70 to 400 should be sufficient in developing stable estimates of the standard
deviations of the averages.  In developing the bootstrap samples, two replicate sampling methods were tested by
Irwin and Rosu (1998): sample of one versus sample of a pair.  This was done to assess whether observations from
adjacent receptors could be treated as independent.   Slight yet significant differences were seen in the variances
computed, and it was concluded that further testing was needed to assess the effect of these differences when using
these sampling techniques within the context of the draft American Society for Testing and Materials (ASTM)
practice to assess model performance.

Irwin and Rosu (1998) left for further study several features of the draft practice: one, the summarization
across all regimes such that one can conclude which of several models most consistently simulates the observed
average result; two, the summarization to determine if the difference seen between models is significant, and three,
the effect on conclusions reached in model performance of the differences seen in the resampling results when
individual samples are taken versus a pair.

2 Tracer field data and defining regimes

2.1 Near-surface nonbuoyant releases

Prairie Grass (Barad, 1958, and Haugen, 1959) included sampling along five arcs downwind from a near-surface
point source release of sulfur dioxide, SO2.  We determined an Obukhov length, L, from the onsite meteorology for
each release.  Non-buoyant near-surface releases of tracer typically are well characterized using surface layer
similarity scaling.  To group these data into regimes, we sorted the 70 experiments from most unstable to most
stable, where the stability is defined in terms of 1/L (1/L < 0 being unstable and 1/L > 0 being stable).  We then
divided the data into seven stability groups, which for each we have sampling results for five downwind arcs.  This
provides us with 35 regimes with results from approximately 11 experiments in each regime.  The eleven most
stable experiments were divided into two regimes, with seven experiments in one group and four experiments in a
separate group.  Irwin and Rosu (1998) determined that four experiments were dispersing in a manner significantly
different from the rest of the experiments in the most stable stability group.  These four experiments had some of the
lowest surface winds, and smallest positive L values.  The dispersive conditions were such that very little vertical
growth occurred.  Much of the SO2 (released 46 cm above the ground) flowed beneath the samplers on the 50- and
100-m arcs, which were 1.5 m above the ground (Briggs, 1982).

2.2 Elevated buoyant releases

The sulfur-hexafluoride, SF6, tracer experiments conducted at Kincaid (Bowne et al., 1983), involved a release from
a 183-m stack with a buoyant plume rise on the order of 200 m.  There were 171 experiments conducted during
April, May and August of 1980, and May and June of 1981, with near-surface hourly concentrations with reasonably
complete meteorology.  There were twelve roughly-defined receptor arcs ranging from 0.5-km to 50-km from the
release, but not all arcs were activated for each experiment.  We divided the data into four stability ranges defined in
terms of Zi/L (Zi is the modeled mixing height).  This provided 29 regimes where centerline concentration values
could be compared with modeling results.

The SF6 tracer experiments conducted at Indianapolis (Murray and Bowne, 1988) involved a release from
an 84-m stack with a buoyant plume rise.  There were 170 experiments conducted during September and October of
1985, with near-surface hourly concentrations, with reasonably complete meteorology.  There were twelve roughly-
defined arcs ranging from 0.2-km to 12-km from the release, but not all arcs were activated for each experiment.
We divided the data using Zi/L into four daytime stability ranges and one nighttime stability range.  This provided
36 regimes where centerline concentration values could be compared with modeling results.
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3 Generation of modeling results

Three plume dispersion models were run on the three field studies: ISC (U.S. EPA, 1979), HPDM (Hanna and
Paine, 1989), and AERMOD (Cimorelli et al., 1996).  ISC is a commonly used multiple source model that employs
the Pasquill dispersion curves.  It was developed in the late 1970's.  HPDM was developed in the late 1980's and is
one of several models designed in the 1980s that employed convective boundary layer parameterizations of
dispersion.  AERMOD was developed over the last five years and attempts to summarize current state-of-practice
boundary-layer parameterizations of dispersion.  The meteorological processor for AERMOD was employed with
available on-site observations, hourly National Weather Service (NWS) weather observations, and twice-daily NWS
upper air observations, to characterize the meteorological conditions for each of the three tracer dispersion sites
(PES, 1998).  To provide a common set of meteorology, these data were then converted to formats suitable for use
by each of the three models.  The Pasquill stability category for use by ISC was derived from the estimated Obukhov
length and site roughness length using relationships discussed by Golder (1972).  For each tracer release, the models
were run so that the simulated centerline concentration was obtained for all possible downwind arcs for each field
study.  We then used these simulated centerline concentration values, C, divided by the emission rate, Q, for each
experiment, for comparison with the average of the observed C/Q values selected as being representative of
centerline concentration values for a particular regime.

4 Analysis of results

Following the draft ASTM procedures for each regime, an average and a standard deviation of this average was
computed from the C/Q values observed and estimated by each model.  For each regime, 500 bootstrap samples
were generated, where the samples were developed using sampling by pairs.  Figure 1 illustrates the regime averages
obtained for each of the three studies as scatter plots and Quantile-Quantile (Q-Q) plots.  In all these analyses, we
are comparing average observed and estimated centerline concentrations from each regime as determined by the
resampling analysis, so differences seen result from differences in the simulated and actual dispersion and plume
rise (rather than differences in the direction of transport). The Q-Q plots are simple pairings of predicted
concentrations; ranked highest to lowest, with observed concentrations, ranked in the same manner.  The dotted lines
shown in the figures depict a factor of two difference.  The scatter plots provide a visual means for comparing values
paired in time and space, but do not provide a means for assessing the ability of the models to simulate the
frequency distribution of values.  The Q-Q plots provide a means for assessing the differences to be seen between
the observed and simulated frequency distributions, but do not provide a means for assessing whether the maxima
being simulated are for similar meteorological conditions as when observed.

In Figure 1, it is evident that ISC and AERMOD best characterize the near-surface releases at Prairie Grass.
It appears that HPDM tends to underestimate the concentration values on average.  The results for Indianapolis and
Kincaid exhibit considerable scatter, with large differences with observations evident in both the scatter plots and
the Q-Q plots.

Figure 2 illustrates regime averages obtained for the Kincaid SF6 comparisons for four stability ranges as a
function of downwind distance.  Results for the most unstable conditions are shown in Figure 2(A) and conditions
progressively approach conditions that are more neutral as we proceed from Figure 2(A) to Figure 2(D).  The error
bars depict the bootstrap estimate of the standard deviation of the computed average, multiplied by two.  Where the
error bars overlap, the differences seen would test to be not significant at the 95% confidence limit.

In Figure 2(A), we see that the ISC model tends to overestimate the centerline concentration values for all
distances downwind.  The ISC model tends to underestimate the average observed centerline concentration values
shown in Figures 2(B) through 2(D).  It is only when we reach the most neutral results shown in Figure 2(D), that
ISC begins to be in accord with the observations, and then only for transport distances beyond 7 km.  The error bars
for the HPDM results overlap the results shown for the observations until conditions become more neutral.  As we
approach neutral conditions (Figures 2(C) and 2(D)), HPDM tends to overestimate the centerline concentration
values for transport distances of less than 5 km.  There is also a tendency to underestimate concentrations for the
nighttime regimes at Indianapolis by HPDM, see solid square symbols in Figures 1(C).  The results for AERMOD
generally are in accord with the observations except for the most unstable cases shown in Figures 2(A) and 2(B),
where for transport distances of order 4 to 6 km, AERMOD tends to underestimate the observed average centerline
concentration values.

5 Overall performance comparisons

We use a pooled average absolute fractional bias and its standard deviation computed across all regimes using
inverse variance weighting, for summarizing model performance across all regimes for a given experiment.  This
avoids being misled by offsetting bias between regimes, where an overestimation in one regime might be offset by
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an underestimation in another regime.  Pooling the results together using inverse variance weighting devalues
regimes in which the computed standard deviation of the absolute fractional bias is large in comparison to that
computed in other regimes.

To assess which model compares best with observations, we form a model comparison measure, MCM =
Avg(AFB) + 2 Std(AFB), where Avg(AFB) is the computed pooled absolute fractional bias over all regimes, and
Std(AFB) is the computed pooled standard deviation of the absolute fractional bias over all regimes.  The model
with the smallest value of MCM is deemed the model that on average compares best with observations.  The
differences between the Avg(AFB) values computed for each model are tested using a null hypothesis that the
differences seen in the computed values for the Avg(AFB) are not statistically significant.  Here we assume the
values of Avg(AFB) possibly have different standard deviations, thus the t-test is:
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where base refers to the statistics for the model having the lowest value for the MCM (base) and i refer to the model
being compared with the base case model.   If t is greater than a Student-t value of 1.96 (assuming degrees freedom
are greater than 30), we reject the null hypothesis that the two means are the same with 95% confidence (for further
discussion on hypothesis testing concerning two means see a standard text as Miller and Freund, 1965).

Table 1 summarizes the results obtained for the three models tested on these three tracer dispersion studies.
Here we have excluded the suspect cases noted above for Indianapolis.  It is seen that AERMOD has the lowest
value of the MCM for Prairie Grass and Kincaid.  HPDM has the lowest MCM for Indianapolis.  The differences
between AERMOD and HPDM for Kincaid are seen to be not statistically significant.  The average performance by
the AERMOD model is roughly the same over all three field studies.  The performance by the HPDM model is
roughly the same for the Kincaid and Indianapolis field studies, and is seen to have the largest differences with
observations for the low-level releases for Project Prairie Grass.  The ISC model has large differences with
observations for all three field studies.  For Indianapolis, AERMOD’s performance is essentially unchanged when
the nighttime regimes are included.  HPDM’s performance is degraded significantly for Indianapolis, if the
nighttime regimes are included.

When onsite Zi and L values were used to sort the Kincaid experiments into regimes (instead of using
results from AERMOD’s meteorological preprocessor), variations in the statistical results for the MCM of order
35% were seen, but these variations did not alter the conclusions reached by the summary statistics.

The above results were based on sampling by pairs to develop the bootstrap samples.  When individual
samples were drawn, the main effect was to reduce the computed variances for the averages and differences between
model and observed averages.  These smaller variances meant the differences seen were more likely to be deemed
significant.  Positive correlation between adjacent concentration observations is likely, and such correlation would
cause larger variances to be computed to the regime averages.  It is concluded that samples should be drawn by
pairs, otherwise differences will be deemed significant when if fact they likely are not significant.

6 Conclusions

The results presented here combined with those presented in Irwin and Rosu (1998) provide a complete examination
of the draft ASTM Standard Practice under development.  These results suggest that the evaluation methodology is
capable of objectively discerning differences in skill between models in their ability to estimate the centerline
maximum concentration at the surface downwind from a point source release.  Next steps includes revising the
practice to be consistent with the findings presented here and in Irwin and Rosu (1998), and developing a numerical
algorithm that can generate pseudo modeling results with known statistical properties.  This last step will allow
direct investigation of how discerning the developed evaluation procedures are, and could provide a means for
testing whether proposed future changes to the methodology are significant and therefore should be adopted.  Two
concluding remarks are warranted.  The first is on the grouping of data for analysis, and the second is on how the
modeling results were created for the analyses discussed in this paper.

The grouping of the data is a valuable and important feature of the draft Practice, and yet it is inherently
subjective and will likely cause concern.  Stratifying the data into groups is a standard statistical technique to
provide greater discernment in statistical significance tests (Miller and Freund, 1964).  The grouping of the data
allows us to compute an average characteristic (such as the centerline maximum concentration), which is the proper
statistic to compare with what the steady-state model is attempting to simulate.  By making the basic statistical
comparisons within each regime, we ensure that we are comparing model estimates and observations that have
ostensibly similar meteorological conditions.  Since we know how the models perform in each regime, it becomes
obvious under what conditions the dispersion characterizations need improvement.  By employing bootstrap
resampling within each regime, we provide summary statistics for each regime.  These summary statistics provide a
means for performing an objective test of whether the differences seen between models in one or more of the
regimes are statistically significant.  Preliminary testing of alternative grouping criteria suggests that the relative
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ranking of performance between models remains the same.  As promising as these preliminary results are, there may
always be concern raised regarding the criteria used in selecting and grouping the data for analysis.  For instance, the
current methodology assumes that average characteristics of data grouped together are representative of a steady-
state meteorological condition.  If conditions were not steady-state over the sampling time of one or more of the
experiments, should these experiments be used?  It is currently believed that as the methodology receives broader
use, experience will provide guidance on acceptable practices in grouping data for analysis.

With respect to the data comparison results shown, it is important to note that meteorological processors
developed for ISC and HPDM were not used in developing the model input meteorology.  Hence, the results shown
here can not be interpreted as being what would be expected if one were to operate ISC or HPDM with their
respective meteorological processors.  Furthermore, HPDM was designed for elevated releases, not surface releases,
and thus the performance seen for the Prairie Grass experiments was not unexpected.  The focus of this analysis was
on whether the draft evaluation methodology was capable of discerning differences in skill, not on defining the
actual relative performance of the three models if they were used as designed.

Disclaimer

The information in this document has been funded in part by the United States Environmental Protection Agency
under an Interagency Agreement (DW13937039-01-06) to the National Oceanic and Atmospheric Administration.
It has been subjected to Agency review for approval for presentation and publication.  Mention of trade names or
commercial products does not constitute endorsement or recommendation for use.
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Table 1.  Summary statistics for model performance.  N is the number of regimes, and the Student-t compares the
difference between the Avg(AFB) value with the model having the smallest value of MCM, ‘Base’.  A value of 1.96
for the Student-t statistic indicates the difference is significant with 95% confidence.

N Avg(AFB) Std(AFB) MCM t-test value

Prairie AERMOD 35 0.40 0.010 0.42 Base

Grass ISC 35 0.94 0.009 0.96 39.77

HPDM 35 1.86 0.002 1.86 137.14

Kincaid AERMOD 29 0.35 0.025 0.40 Base

ISC 27* 1.99 0.001 1.99 65.19

HPDM 29 0.38 0.023 0.42 0.79

Indianapolis AERMOD 30 0.36 0.031 0.42 2.06

ISC 30 0.87 0.021 0.91 18.12

HPDM 30 0.27 0.025 0.32 Base

* In two regimes ISC’s predictions were essentially zero, when observed concentrations were otherwise.  In such
cases, the computed variance of the AFB is zero, which precludes including results in the pooled Avg(AFB) as this
requires use of the inverse of the variance.
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Figure 1 .  Scatter and Quantile-Quantile plots, comparing modeling results from three models on tracer
dispersion data collected at three field studies.  Dotted lines indicate a factor of two over or under
prediction.
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Figure 2 .  Comparison of modeled and observed average C/Q values as a function of downwind
distance for four stability ranges defined in terms of Zi/L for Kincaid tracer results.  Modeling results are
shown for three models.


