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tool to caleulate the effects of different kinds of air pollutants. I ocal authorities alse use
models to set up most effective strategies for controlling air pollution problems on a local
or regional scale. The effect of environmental measures should also be evaluated by
mathematical dispersion models,

On the local scale (a few kilometers), individual sources have occasionally proven to causg_
large problems. The pathway of pollutants in the air on a local scale is_ presented in Figure

2. For this purpose, dispersion models for stack emissions are necessary, at present; -they
are being implemented on Ccomputers in which the transport and dispersion of air pollutants
is described. This type of models describes physical processes in the atmosphere. Therefo-
re, atmospheric science is of importance and is frequently applied to air pollution studies.

1.4 Important features of dispersion models

Dispersion theory started with G.I. Taylor’s analysis (1921), who described the behaviour
of particles in homogeneous turbulence. This analysis proved to be very worthwhile and

"stability categories", proposed by Pasquill (1961), Briggs (1973) or Singer and Smith
(1966) became more popular, partly because they do not require turbulence data as input,
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Figure 2 The pathway of pollutants in the air on a loca] scale,
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mala and Pilinis (1991) in the Grand Canyon. Non-homogeneous turbulence above flat
terrain is worked out by Baerentsen and Berkowicz (1984) and Brusasca et al, (1989).

A detailed overview is given by Zannetti (1990). The incorporation of buoyant sources was
developed by Van Dop (1992), Beniston et al. (1990) and Hurley and Physik (1993) and in
a simpler way by Anfossi et al. {1993).

i
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i s
oy
=

Figure 3 The gaussian plume concept.

A further technique to calculate dispersion is the Large Eddy Simulation (LES). The basic
idea of LES is fo solve the Navier Stokes equations for the energy containing eddies in a
grid of cells. While the Monte Carlo models need tutbulence profiles as input, the large
eddy models generate those profiles themselves, with only the geostrophic wind field and
surface conditions as input. By tonsidering the motions of particles in this framework, the
dispersion is calculated. Because a large number of cells must be followed with a small
time step, calculations are expensive and can not be done to obtain concentration statistics
.over long periods (e.g. a year). Examples of such calculations were recently presented by
Nieuwstadt (1992), Nieuwstadt and De Valk (1987), Nieuwstadt and Bouwmans (1994) and
Henn and Sykes (1992).

All these different models reflect the reality that atmospheric processes are very complica-
ted. Each model can only handle a restricted subset of processes, depending on the purpose

of the model and the available input parameters. This determines the model’s applicability
and usefulness,
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